

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS
BACK-PROPAGATION NEURAL NETWORKS

IN ADAPTIVE CONTROL OF
UNKNOWN NONLINEAR SYSTEMS

by

Chin Hock Teo

December, 1991

Thesis Advisor:
Co-Advisor

Roberto Cristi

Ralph Hippenstiel

Approved for public release; distribution is unlimited

T259125

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
Form Approved
OMB No 0704-0188

1a REPORT SECURITY CLASSIFICATION

UNCLASSIFIED
lb RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY
N/A

2b. DECLASSIFICATION /DOWNGRADING SCHEDULE

3 DISTRIBUTION /AVAILABILITY OF REPORT

Distribution unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION

Naval Postgraduate School

6b OFFICE SYMBOL
(If applicable)

EC

7a NAME OF MONITORING ORGANIZATION

Naval Postgraduate School

6c. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000

7b ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000

8a. NAME OF FUNDING /SPONSORING
ORGANIZATION

8b OFFICE SYMBOL
(If applicable)

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM
ELEMENT NO

PROJECT
NO

TASK
NO

WORK UNIT
ACCESSION NO.

1 1 . TITLE (Include Security Classification)

BACK-PROPAGATION NEURAL NETWORKS IN THE ADAPTIVE CONTROL OF
UNKNOWN NONLINEAR SYSTEMS

12. PERSONAL AUTHOR(S)
Teo, Chin-Hock

13a TYPE OF REPORT
Master's Thesis

13b TIME COVERED
FROM TO

14. DATE OF REPORT (Year, Month, Day)

1991, December
15 PAGE COUNT

114

16 SUPPLEMENTARY NOTATION
The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U. S. Government.

17 COSATI CODES

FIELD GROUP SUB-GROUP

18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

Back-propagation neural network, direct model
reference control system, nonlinear systems,
discrete-time models.

19 ABSTRACT {Continue on reverse if necessary and identify by block number)

The objective of this research is to develop a Back-propagation Neural Network (BNN) to control certain classes
of unknown nonlinear systems and explore the network's capabilities. The structure of the Direct Model Reference
Adaptive Controller (DMRAC) for Linear Time Invariant (LTI) systems with unknown parameters is first analyzed.
This structure is then extended using a BNN for adaptive control of unknown nonlinear systems. The specific
structure of the BNN DMRAC is developed for the control of four general classes of nonlinear systems modelled
in discrete time. Experiments are conducted by placing a representative system from each class under the BNN's
control. The conditions under which the BNN DMRAC can successfully control these systems are investigated. The
design and training of the BNN are also studied.

The results of the experiments show that the BNN DMRAC works for the representative systems considered,
while the conventional least-squares estimator DMRAC fails. Based on analysis and experimental findings, some
general conditions required to ensure that this technique works are postulated and discussed. General guidelines
used to achieve the stability of the BNN learning process and good learning convergence are also discussed.

To establish this as a general and significant control technique, further research is required to
establish analytically, the conditions for stability of the controlled system, and to develop more specific
rules and guidelines in the BNN design and training.

20 DISTRIBUTION /AVAILABILITY OF ABSTRACT

UNCLASSIFIED/UNLIMITED CXSAME AS RPT DTIC USERS

21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED
22a NAME OF RESPONSIBLE INDIVIDUAL

R. Cristi
22b TELEPHONE (Include Area Code)

408-646-2223
22c OFFICE SYMBOL

CODE ECCX

DD Form 1473. JUN 86 Previous editions are obsolete.

S/N 0102-LF-014-6603

SECURITY CLASSIFICATION OF THIS PAGE

Unclassified

(i)

Approved for public release; distribution is unlimited.

Back-propagation Neural Networks

in Adaptive Control of

Unknown Nonlinear Systems

by

Chin Hock Teo

Major, Republic of Singapore Air Force

B.Eng.(Hon), National University of Singapore, 1984

Submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

December 1991

Department or fclectncal and Computer bngineenng

ABSTRACT

The objective of this research is to develop a Back-propagation Neural Network

(BNN) to control certain classes of unknown nonlinear systems and explore the network's

capabilities. The structure of the Direct Model Reference Adaptive Controller (DMRAC)

for Linear Time Invariant (LTI) systems with unknown parameters is first analyzed. This

structure is then extended using a BNN for adaptive control of unknown nonlinear

systems. The specific structure of the BNN DMRAC is developed for the control of four

general classes of nonlinear systems modelled in discrete time. Experiments are

conducted by placing a representative system from each class under the BNN's control.

The conditions under which the BNN DMRAC can successfully control these systems are

investigated. The design and training of the BNN are also studied.

The results of the experiments show that the BNN DMRAC works for the

representative systems considered, while the conventional least-squares estimator

DMRAC fails. Based on analysis and experimental findings, some general conditions

required to ensure that this technique works are postulated and discussed. General

guidelines used to achieve the stability of the BNN learning process and good learning

convergence are also discussed.

To establish this as a general and significant control technique, further research is

required to obtain analytically, the conditions for stability of the controlled system, and

to develop more specific rules and guidelines in the BNN design and training.

in

7"-

TABLE OF CONTENTS

I. INTRODUCTION 1

A. OBJECTIVE 1

B. NEURAL NETWORKS IN ADAPTIVE CONTROL 1

C. BASIC CONCEPTS OF ADAPTIVE CONTROL 3

D. ANALYSIS OF A DMRAC FOR UNKNOWN LTI SYSTEMS . . 7

1. Controller Parameters 8

2

.

Parameter Estimation 10

3

.

Summary 13

E. ADAPTIVE CONTROL OF NONLINEAR SYSTEMS 14

II. BNN DIRECT MODEL REFERENCE ADAPTIVE CONTROL 16

A. APPLICATIONS OF NEURAL NETWORKS 16

B. ANALYSIS OF BACK-PROPAGATION NEURAL NETWORK . . 18

C. NONLINEAR SYSTEMS FOR BNN DMRAC 2 2

D. DEVELOPMENT OF THE BNN DMRAC 2 3

1. Off-line Learning 27

2. On-line Learning 28

III. SIMULATIONS, RESULTS AND DISCUSSIONS 29

A. EXPERIMENTING WITH THE BNN DMRAC 29

1. Experiment 1: System Model 1 3

2. Experiment 2: System Model 2 3 6

IV

3. Experiment 3: System Model 3 38

4. Experiment 4: System Model 4 41

B. OBSERVATIONS AND DISCUSSIONS 4 3

1. Failure of Least-Squares Estimator DMRAC . . 44

2. Some General Requirements for the System . . 44

3. Assumed Orders of the System 4 5

4. Stability of Open Loop System 45

5. System Input and Output Scaling 46

C. BNN DESIGN AND TRAINING 4 7

1. Implementation of the BNN Software Simulator 47

2. Design of the BNN 48

3. Adequacy of Training 49

4. Neural Network Training 50

5. Setting the Bias Inputs 52

IV. CONCLUSIONS 54

A. SUMMARY 54

B. IMPORTANT RESULTS 54

C. FURTHER RESEARCH AND DEVELOPMENT 56

1. Stability Conditions for the BNN DMRAC ... 56

2. Design of the BNN 57

3. BNN Learning 57

APPENDIX A. DMRAC DESIGN FOR UNKNOWN LTI SYSTEMS . . 58

APPENDIX B. BNN DMRAC FOR UNKNOWN LTI SYSTEMS 7 4

V

APPENDIX C. SIMULATION PROGRAMS 8 2

APPENDIX D. BNN SOFTWARE SIMULATOR 9 9

LIST OF REFERENCES 105

INITIAL DISTRIBUTION LIST 106

VI

I. INTRODUCTION

A. OBJECTIVE

The objective of this thesis research is to develop a Back-propagation Neural

Network (BNN) to control certain classes of unknown, nonlinear dynamical systems and

to explore the network's capabilities. Discrete-time models, which readily describe many

real world systems, are used to represent the unknown nonlinear systems for the purpose

of analysis and simulation.

B. NEURAL NETWORKS IN ADAPTIVE CONTROL

Linear control theory is a very mature field. Since the beginning of this century,

both necessary and sufficient conditions for the stability of Linear-Time-Invariant (LTI)

systems have been established and rigorously proven. As the result, many powerful and

well-established techniques (e.g. state-feedback) have been developed to design

controllers for LTI systems which will achieve any desired system response or any

specified robustness. In contrast, the conditions for stability of most nonlinear and time-

varying systems can only be established, if at all possible, on a system-by-system basis.

Hence, general control design techniques, even just to achieve stability, are still not

available for many classes of nonlinear systems.

From the fifties up to the late seventies, major advances were made in the

identification and adaptive control of LTI systems with unknown or time varying

dynamics [Ref. 1]. Many adaptive control techniques, for which global stability

is assured, have been developed by assuming the system to be LTI, and applying well-

established results from linear systems theory and parameter estimation. However, the

original targets of these techniques were actually systems with slowly varying

parameters. These systems belong to a significant class of nonlinear systems. The

controllers are also nonlinear systems by themselves. Nonetheless, limited advances have

been made to address the adaptive control of more general classes of nonlinear systems.

Recently, the use of neural networks for parametric identification and adaptive

control of certain general classes of nonlinear systems, based on the indirect adaptive

control structure, has been suggested [Ref. 2]. In that approach, a neural network

is first trained to emulate an unknown, nonlinear Single-Input-Single-Output (SISO)

system. Then the errors between the system output and a desired reference model output

are back-propagated through the trained neural network emulator to obtain the

contributing control input error. Based on a suitable minimization function of the control

input error, a neural network controller is trained to control the system so that it behaves

like the desired reference model. Simulation results have shown that neural network-

based indirect adaptive control of large classes of nonlinear systems is not only feasible,

but seems quite promising as a general technique.

The stated objective of this thesis research is to further explore, analyze and

develop the neural network-based adaptive controller. Specifically, the use of neural

networks as a direct adaptive controller for some general classes of nonlinear systems

shall be considered. Unlike the indirect adaptive control approach, only one neural

network, instead of two, shall be used to learn the unknown control structure and

parameters directly. The same neural network estimator shall then be used as the

controller. The development of a neural network estimator-controller is the key issue

addressed in this thesis.

C. BASIC CONCEPTS OF ADAPTIVE CONTROL

Adaptive control has been applied to many areas such as robot manipulation, ship

steering, aircraft control, chemical process control and bio-medical engineering. The

applications are mainly aimed at handling parameter variations (slowly time-varying) and

parameter uncertainties in the system under control.

In adaptive control, the basic idea is to combine an on-line parameter identification

process with control system design calculation based on the estimated parameters and the

required control law to implement the controller. The general structure of an adaptive

control system is shown in Figure 1.

Consider the adaptive control of an unknown linear time invariant (LTI) system.

One scheme is to parameterize the system, for example, by a linear state-space model

{A,B,C,D} or a transfer function H(-) with unknown parameters. These parameters are

then estimated on-line by a suitable estimator. Based on the estimated parameters,

INPUTS
UNKNOWN
SYSTEM

OUTPUTS

PARAMETER

ESTIMATOR

Estimated

Parameters

A

CONTROLLER
DESIGN

CALCULATION

Objective

(Control Law)

Figure 1. General Adaptive Control Structure,

appropriate design calculations can be performed on-line to implement the chosen control

law. This class of algorithms is commonly referred to as indirect adaptive control . Figure

2 shows the structure of an indirect adaptive control system.

Alternatively, it may be possible to parameterize the unknown system directly in

terms of the required control parameters (e.g. the state-feedback gains) to implement the

chosen control law. In this case, the on-line estimator would generate the estimates of

the unknown control parameters, and then uses them directly for the control. The need

for design calculation on-line is therefore eliminated. This class of algorithms is called

direct adaptive control . The structure of a direct adaptive control system is shown in

Figure 3.

/!

v(t)

- CONTROLLER

~r

u(t)

controller!
adjustment

TT
/\

UNKNOWN
SYSTEM

y(t)

- ESTIMATOR

DESIGN OBJECTIVE ESTD. PARAMETERS

Figure 2. Indirect Adaptive Control Algorithm.

v(t)

DESIGN OBJECTIVE

\7

-
1 ESTIMATOR
CONTROLLER

u(t) UNKNOWN
SYSTEM

MEASUREMENTS

Figure 3. Direct Adaptive Control Algorithm.

y(t)

Many different methods have also been used to specify the desired behavior or

performance of a system under adaptive control. One very common scheme is the model

reference adaptive control. The basic idea is to design the adaptive control system (be

it direct or indirect) so that the closed loop system behaves like the specified reference

model.

We see that a key component of an adaptive controller is the parameter estimator.

Many parameter estimation schemes have been devised and employed in adaptive control.

However, it is important to note that most existing techniques generally require a linear

parameterization of the system, i.e., parametric uncertainties must be expressed linearly

in terms of a set of unknown parameters. Such parameterization of the system is usually

in a form of a regression equation which is linear in the parameters. In linear systems,

the regressor can usually be formed using only linear functions of the state measurements

or observations from the systems, with the unknown parameters as coefficients.

However, in nonlinear systems, nonlinear functions of the measurements or observations

are generally required. Hence, to use current estimation techniques requires that these

nonlinear functions are known. However, with unknown nonlinear systems, this will not

be the case. Hence, the use of neural network as a generalized estimator is proposed in

such a situation.

In order to develop a neural network-based direct model reference adaptive

controller (DMRAC) for certain classes of unknown, nonlinear systems, the design of

a DMRAC for unknown LTI systems shall be first reviewed and analyzed in detail.

Based on the same control structure, the neural network shall be employed to extend the

control to nonlinear systems.

D. ANALYSIS OF A DMRAC FOR UNKNOWN LTI SYSTEMS

Consider an LTI system described by an ARMA model,

A(q)y(t) = B(q)u(t) ,
(1-1)

with A(q) and B(q) being polynomial operators
1 with unknown coefficients. A(q) is

assumed, without loss of generality, to be monic and 6egree[A(q)] = n > degree[5(^J]

= m. For the direct MRAC design, the following assumptions are required:

1. The upper bound on the system order (i.e. maximum degree ofA(q), n) is known.

2. The system has no hidden unstable modes and has a stable inverse.

3. The relative degree of A(q) and B(q) (i.e. n - m) is known.

The design objective is for the closed loop system to track a reference model

D(q)y(t) = v(0 ,
d-2)

where D(q) is the monic characteristic polynomial operator of the desired system, and

v(t), an external input. Let the degree of D(q) be r. It is well known that with linear

state-feedback, all n poles of the closed loop system can be placed anywhere in the

complex plane (provided the system is controllable). Hence to achieve model tracking by

state-feedback, r out of the n poles of the closed loop system must be placed to match

those of the reference model. The m unwanted zeros of the open loop system must also

1 The argument q of the polynomials can be interpreted as the forward time-shift operator in

discrete-time modelling or as the Laplace s-operator in continuous-time modelling.

be canceled by the remaining poles of the closed loop system. Hence r must be equal to

(n - m). For proper pole-zero cancellation, a stable inverse system is also required.

Very often, only u(t) and y(t) are accessible while the other states required for full-

state feedback are not. Hence, in these cases, an observer is required. By employing a

Luenberger observer or a steady-state Kalman filter, it can be shown that the combined

observer-state-feedback system yields the following structure for the feedback controller,

u(t) = ^-u(t) + ^-v(r) + v(r) ,
(1-3)

where a(q) is the monic characteristic polynomial operator of the observer. It can be

chosen arbitrarily, provided it is a stable system of degree n. Hence, degree[A (q)] = n

must be known. The polynomial operators h(q) and k(q) are the feedback polynomial

operators and have parameters which are determined by the unknown system, the

observer and the reference model characteristics. It can be shown that degree[/?^J] <

(n - 1) and degreef^^j] < in - 1).

1. Controller Parameters

To obtain the unknown control parameters in terms the parameters of the system,

the observer and the reference model, we introduce first the notion of the partial state

z(t) [Ref.3], in which we represent the system of equation (1-1) as

A(q)z(t) =«(0
(1-4)

y(t) = B(q)z(t) .

Combining equations (1-3) and (1-4), we can easily express the closed loop dynamic as

(1-5)
[a(q)A(q)-h(q)A(q)-k(q)B(q)]z(t) = a(q)v(t)

,

y(t) = B(q)z(t) .

To obtain the desired closed loop behavior, the equality

a(q)A(q) - h(q)A(q) - k(q)B(q) = ±a(q)D(q)B(q) (1-6)
b

i

must be satisfied so that the closed loop system has r of its poles coincide with those of

the reference model. The remaining poles must cancel the open loop zeros, so that the

closed loop dynamic is the same as the reference model's, apart from the scaling factor

bj on the reference input v(t).

Re-arranging equation (1-6), the following Diophantine equation is obtained

[Ref.lipp 508-510]

A(q) - ^-D(q)B{q)
b

i

(1-7)

The left side of equation (1-7) is of degree < (2n - 1), while u(q)A(q) is of degree In.

Hence the factor \lb
1

is needed to ensure that (l/b
1
)a(q)D(q)B(q) is monic and thus

eliminating the q
2" term on the right side of the equation. IfA(q) and B(q) are relatively

co-prime (i.e. there is no pole-zero cancellation), then a unique solution for h(q) and k(q)

is guaranteed to exist
2

.

2. Parameter Estimation

Since A(q) and B(q) are unknown polynomial operators, an estimator is required

to estimate the system parameters in order to implement the controller using the

estimated parameters. In the following development, on-line estimation based on a

particular regression form shall be used to recursively estimate the controller parameters

directly.

Applying the polynomial operator in equation (1-7) to the partial state z(t), the

following regression equation,

a(q)u(t) = h(q)u(t) * k(q)y(t) + ±-a(q)D(q)y(t) (1-8)
b

i

is obtained. Then using q as the forward time shift operator and the filtered input and

output signals defined by

q-n
*(q)y

F
(t) =y(t)

q-na(q)u
F
(t) = u(t)

,

a more convenient form of the regression equation (1-8) is obtained in equation (1-10).

2 The left hand side of equation (1-7) can be cast into a Sylvester matrix multiplied by the

parameter vector consisting of the unknown coefficients of h(q) and k(q). The Sylvester matrix is

non-singular if A(q) and B(q) are relatively co-prime [Ref.3:p.l59] and a solution for the parameter

vector is guaranteed in this case.

10

or

q-r
u(t) = q-^h(q)u F

(t) + q- (n+r)
k(q)y

F
(t) + ±q-r

D(q)y(t)
, (1-10)

where

q-r
u(t) = $(r)

r
o ,

*(0 -

'

*i
«
F
(r-r-l)

K
F
(f-r-2)

*2

y
F
(t-r-l)

y
F
(t-r-2)

=

y
F(t-r-n + l)

\n-\)

q-'D(q)y(t).
1

(1-11)

Equation (1-11) is a realizable linear in the parameter regression equation with a linear

regressor $(t). In this form, many standard recursive estimation techniques can be used

to estimate the unknown parameter vector G . The following estimate Q(t) of 0„ is

obtained by applying the recursive least-squares estimation technique 3
as follows:

9(r+l) = 9(0 +
P(0<S>(Q[K(r-r) - <E

r(Qe(Q]

l + *r(0P(0$(0
(1-12)

The value of P(0) to start the recursion is discussed in most texts on recursive least squares

estimation.

11

P(f+1) = P(t) - p(t)(t) T(t)p(t)

1 + $ T
(t)p(t)$(t)

Now the control equation (1-3) can be rewritten as

u(t) = q-nh(q)u F
{t) * q-nk(q)y F(t) + ±v(t)

This can be further rearranged as

«(0 = S>
c(0

r © ,

where
r

u
F
(t-\)

u
F
(t-2)

*
e(0

=

(1-13)

(1-14)

d-15)u
F
(t-n + l)

y
F
(t-D

y
F
(t-2)

y
F
(t-n + \)

v(f)

which is identical in structure to the regression equation (1-11). Notice that equation (1-

15) has the same parameter vector o as equation (1-11). $c (t) is also identical to $(t)

except for the time shift q
r
and the term v(t) replacing D(q)y(t). Therefore, with identical

structure as the estimator, the controller can be directly implemented without the need

for an intermediate control design calculation. In the control phase, the current estimate

6(0 of O is used to generate u(t).

12

3. Summary

All the necessary steps from performance specification to the design of the

DMRAC for unknown LTI systems have been developed. In summary, the design and

implementation procedures are:

1. The observer characteristic polynomial a(q) of degree n and the desired reference

model 1/D(q) of degree (n - m) are first chosen.

2. The closed loop system output y(t) is filtered by the inverse reference model to obtain

D(q)y(t). y(t) and if(t) are obtained by filtering the input and output signals, u(t) and

y(t), respectively, by the observer (l/[q'
n
a(q)]).

3. The vector <k(t) is formed as shown in equation (1-11) and used as input to the

parameter estimator. On-line estimation of the parameter vector O can be performed

using equations (1-12) and (1-13).

4. The control signal u(t) for the closed loop system is generated using equation (1-14)

and the estimated parameter vector Q(t) (instead of 0J.

Figure 4 illustrates the estimation and control algorithm of the DMRAC. Note that

the block O(t) is a linear associative memory with recursive estimation updates to

minimize mean square errors between u(t) and u(t) = $(t)
T
Q(t).

Appendix A contains a worked example of the design of a DMRAC for an

unknown LTI systems. Software simulations are conducted to show how the DMRAC

can be implemented and how it works. MATLAB4
software environment is employed

in all the software simulations conducted.

MATLAB® is a registered trademark of The MathWorks, Inc.

13

<Mt)

u(t) = $c (t) 0(t)

u(t-r) = $(t)
T
0o

u(t)

-) SYSTEM

^k-

r-STEP

DELAY
OBSERVER

$(t) *•*

fi(t-r)

©(t)

) ESTIMATOR

Figure 4: Estimation and Control Algorithm of the DMRAC

E. ADAPTIVE CONTROL OF NONLINEAR SYSTEMS

Many variations of the adaptive control technique analyzed above have been also

developed to handle different assumptions about the unknown LTI systems

[Ref.4]. Since most of these techniques deal with linear systems, simple linear

functions of the measurements or observations, such as ~f(t), yf(t-l),..., if(t), if(t-l),....

(assuming a SISO system) are always sufficient to form the regressor vector $(t) to give

a regression equation which is linear in the parameters.

However, with nonlinear systems, the use of nonlinear functions of the

measurements or observations in the regressor vector becomes almost always necessary

14

in order to keep the regression equation linear
5

. Therefore it is necessary to know the

exact nature of these nonlinear transformations in order to form the linear regressor to

allow the use of standard parameter estimation techniques. Chapter 5 of [Ref.5]

provides more details on the use of standard parameter estimation techniques for

nonlinear systems.

Since the nonlinear system to be controlled is assumed unknown, the appropriate

nonlinear regressor required by the estimator is unknown. Therefore, the conventional

approach in using standard parameter estimation technique such as least squares

estimation cannot be used. It has been shown in [Ref.6] that a neural network can

learn to emulate any continuous function. The idea then is to replace the linear

associative memory of B(t) with a neural network. The neural network shall be taught

to emulate the appropriate nonlinear controller in the same manner as the recursive least

squares estimator is used in the DMRAC for LTI systems. The specific structure of the

neural network-based direct model reference adaptive controller for certain classes of

nonlinear systems is developed in the next chapter. The performance of the neural

network as a DMRAC is investigated experimentally in Chapter III.

5
This implicit requirement arises from the fact that existing estimation techniques generally

require a linear parameterization of the system.

15

H. BNN DIRECT MODEL REFERENCE ADAPTIVE CONTROL

A. APPLICATIONS OF NEURAL NETWORKS

A large variety of artificial neural networks has been developed and employed in

numerous applications [Ref.7]. Successful applications of artificial neural networks

have been developed in such areas as pattern recognition, speech and natural language

processing, image compression, functional optimization, and even financial and economic

system modelling. Artificial neural networks have also been highly touted for control

engineering applications with early experiments such as the self-learning broomstick

balancer [Ref.8] and the recent neural network truck backer-upper [Ref.9].

A neural network usually consists of a large number of simple processing elements,

known as neurons. Each neuron has a number of inputs, each associated with a synaptic

weight as shown in Figure 5. It usually performs only very simple mathematical

operations:

• each input (including a fixed bias) to the neuron is multiplied by the associated

synaptic weight.

• the results of the multiplications for all the inputs are summed.

• the summand is then mapped to the output of the neuron through a nonlinear

function TfJ. Typically, Tf-J is a monotonically increasing function (e.g. tanh[-]).

The first two operations is actually a scalar dot-product between the inputs and

16

the associated synaptic weight vector of the neuron. The neurons are often interconnected

in layers, in a predefined manner.

INPUTS

BIAS

OUTPUT

The most distinctive and appealing

feature of many neural networks is that

they learn by examples. Learning in the

context of artificial neural network, is

achieved through adapting the synaptic

Figure 5: A Neuron,
weights of the neurons. The synaptic

weights then serve as a form of associative memory mapping the inputs of the neural

network to its outputs. Based only on pre-assigned learning rules, the neural network can

hence derives its functionality through learning by examples rather than through the

traditional programming approach employed in traditional von Neumann machines.

Hence, neural networks provide an approach that is closer to human perception and

recognition than most other information processing approaches in use today.

Currently, the most popular and commonly used neural networks for control system

design is the Back-propagation Neural Network (BNN). Its popularity stems from the fact

that the BNN implements a learning procedure, known commonly as the generalized delta

rule [Ref.10], that allows it to learn to emulate a very large class of nonlinear

functions.

The structure of the BNN will be discussed in detail in the next section. This is

followed by a description of the four general classes of SISO nonlinear systems

17

considered for control by a BNN DMRAC. Finally, the structure of a BNN DMRAC for

each class of these nonlinear systems is established.

B. ANALYSIS OF BACK-PROPAGATION NEURAL NETWORK

A back-propagation neural network is a multi-layer, feed-forward network which

has an input layer, an output layer and at least one hidden layer. Neurons are found in

the output and hidden layer(s) while the input layer has only input connections feeding

the neurons in the first hidden layer. Figure 6 shows a multi-layer back-propagation

W [1] w [21 W [3]

MTM r MPl r fTm riL) Aj-tJ Aj-tJ

//\(YM r //Yv i r IIS V 1 r
// ArV // X 2jJ

[2i\y

// Xfv
x \

y

Inputs pi

1/
zMJ

y
m\V// [21

'//
z y

\

v\
\\

V z '3J yP]

Outputs

^®— r —Yv_ r yvi r^PAZjJ— ~P\Zj)
—

Bias»J^—

Figure 6. A Back-propagation Neural Network

network with two hidden layers. In the back-propagation neural network, the signal flows

from input to output layers. There is no feedback or even interconnection between

neurons in the same layer. There is usually also a bias input for each neuron with an

associated non-zero synaptic weight.

18

To describe mathematically the learning process the BNN uses, we first define wjk
l'J

as the connection weight for the path from the j

m neuron in (i-l)
th
layer to the k"

1 neuron

in r* layer. Also define Xj as the 'f
1

input to the neural network. Then the BNN in Figure

6 can be represented mathematically as

y
m = ri^ri^'n^x]]] ,

(
2_1

)

where x = {*,} is the vector of all the inputs to the BNN. Wi] = {wjk
PJ

} the synaptic

weight matrix of the r* layer formed from columns of synaptic weights associated with

the inputs of each neuron, y
111 = {yk

[iJ

} is the vector of all outputs in the i* layer. Next

we define also zf
} as the summation of weighted inputs of the 'f

1

neuron. In the learning

process, the BNN adjusts the synaptic weights Wi]
for all i, to minimize a suitable

function of the error between the output y Ĵ and a desired output yd = {ydk} for a N-

layer BNN. The most common error function used is

e - 4 E CK-y*)
2

.
(2-2)

z All k

where k is the index spanning all the output neurons. This minimization is performed for

each set of input vector given to the BNN. Other forms of error functions, including the

sum of the absolute errors, can also be used.

The BNN implements a modification of the gradient descent algorithm (also known

as the least-mean-squares method, LMS) to update each synaptic weight at time t + 1

with

19

K?L
/ dE^

dw W
V
vrv

Jk

-KV (2-3)

where /u and 1/ are scalars representing the learning rate and the momentum rate. The

learning rate is equivalent to the step-size parameter in the conventional LMS algorithm.

Like the LMS algorithm, too large a learning rate often leads to instability of the learning

system while too small a value would result in a very slow learning process. The use of

a momentum term has been found to speed up the learning process considerably. It

allows a larger learning rate yet avoids the point of instability. For the r* layer,

BE

dw [-]

(dE^
4 f

*?
)

(2-4)

*,"«? .

where the local error vector ef
lJ

is given by

w n// W\ v^ P+i] P+i]
(2-5)

All k

Equation (2-4) is a direct application of the chain rule in differential calculus. At the

output layer (say, N* layer),

Once ew = {ef1
} at the output layer is obtained, then e

lN'1]
, e1

"'21
,... can be recursively

computed using equations (2-4) and (2-5). The weights can be updated using equation (2-

3). Note that different learning rates and momentum rates can be used in different layers.

20

The equations (2-3) through (2-5) describe mathematically the error back-propagation

mechanism from which the BNN derived its name. Figure 7 describes the learning

process diagram matically. T'(-) is the first derivative function of Y(-) and x represent the

term-by-term products of the two sets of inputs.

As proposed earlier, a direct model reference adaptive controller shall be built by

replacing the linear associative memory block of the DMRAC (see Figure 4) with a

BNN. As an initial proof of the concept, an experiment was conducted by replacing the

least-squares estimator with a BNN directly in the DMRAC for unknown LTI systems.

The results of this experiment are shown in Appendix B together with the programs

,[ii,

\fr® m^y
c^nn=t> Awm z

[2] ^fnj=^> aw121
z

[3] E=:,niK> aw,[3]

Figure 7. Back-propagation Neural Network Learning

developed for the simulations. The results indicate that the BNN in the DMRAC structure

21

can control an unknown LTI system as well as the DMRAC based on recursive least-

squares estimator.

C. NONLINEAR SYSTEMS FOR BNN DMRAC

Four important classes of unknown nonlinear SISO systems are considered for

direct adaptive control using the BNN. They are modelled in discrete-time for analysis

and simulation. These are the system models used in [Ref. 2] for which BNN indirect

adaptive control has been successfully demonstrated. They are important because many

real world systems are readily described by these models [Ref. 5]. Mathematical models

are first introduced to describe these systems so that the structure of the BNN DMRAC

can be developed analytically. The four models are:

(1) Model 1:

n-l

y(f+l) = J>^f-*) + g [(w(*),«(*-l),..,K(*-m+l)] (2
"7)

k=0

In this model, the external input u(t) is subjected to a nonlinear mapping gf-J. The result

then acts as the system input. These auto-regressive systems are indeed very common.

For example, large mechanical systems, hard nonlinearities such as input saturation,

dead-zones or backlash are readily described by this model.

22

(2) Model 2:

m-\

y(t + \) = f[y(t) >y(t-l),..,y(t-n+l)] * £ b
k
u(t-k) (2-8)

*=o

In the second model, the auto-regressive variables of the difference equation describing

the model are subjected to a nonlinear functional mapping. Again this class of systems

is very common. As an example, the action of viscous drag on an underwater vehicle can

be modelled by an equation of this form.

(3) Model 3:

y('+l) =/[y(r),y(r-l),..,y(r-n + l)] + g {u(t),u(t-\),..,u{t-m + \)]
(2-9)

Here both the input and the auto-regressive variables are subjected to nonlinear functional

mapping. However the nonlinear mapping of the input and the auto-regressive variables

remain separate. Again, it is not difficult to find real world systems that are closely

described by this model. For example, an underwater vehicles subjected to input

saturation and viscous drag could be conveniently modelled in discrete-time by a

difference equation of this form.

(4) Model 4:

y(t + l) = h
[
y(t),y(t-l),..,y(t-n+l)Mt)Mt-l),.Mt-m + \)]

(2-10)

23

In this model, a single nonlinear functional mapping applies to the external input as well

as the autoregressive variables of the difference equation. An example of this class of

systems is the bilinear system.

D. DEVELOPMENT OF THE BNN DMRAC

Consider the class of systems described by Model 1. By replacing g[u(t)] with w(t),

an equivalent linear system

/i-i

y(f+l) = ^^y(r-Jt) + w(r) (2" 11)

Jt=0

is obtained. This has a form similar to equation (1-1). Therefore, the development of the

DMRAC for this equivalent linear system would be exactly as in Chapter I, Section D.

The regression equation for the estimator will be identical to equation (1-11) with if(t)

replaced by vf(t) = q'na(q)w(t), where w(t) = g[u(t)J.

Unfortunately, since g[-J is unknown, there is a problem in forming the regressor

which shall be used as the input to a standard estimator. If a BNN can be taught to

emulate the nonlinear mapping of vf(t) = g[if(t)], then the regressor can be formed. In

addition, if it can also be taught to perform the parameter estimation simultaneously, then

we will have a BNN DMRAC. Hence one approach is to replace the least-squares

estimator with a BNN. The BNN can be trained using the input vector $(t) and the

desired output q'ru(t) of equation (1-11). The BNN is expected to learn the functional

24

mapping of gf-J while performing the parameter estimation simultaneously. The same

BNN can then be used as the controller, generating u(t) given the input vector $
c (t) as

in equation (1-15).

Next consider the class of systems described by Model 2. If a BNN can emulate

the nonlinear mapping of the following control equation

/ m-l >>

uit) = -±
K

/[y(0,y(r-l),..,y(r-« + l)] + £ b
k
u(t-k) - r(t) (2-12)

then the system will track r(tf. As long as a BNN can be taught to emulate this

nonlinear mapping given the direct measurements y(t), y(t-l),..., u(t), u(t-l),... and r(t),

a controller can be realized. A regression equation suitable for parameter estimation can

be obtained by replacing r(t) with y(t) in equation (2-12) provided the inverse mapping

exists. So a BNN shall be employed to learn the nonlinear mapping of equation (2-12)

using this regression form, and to act as the controller.

In many cases, the direct state measurements forming the inputs are not always

accessible in the actual system. For example, under continuous-time modelling, these

measurements may be derivatives of some physical measurements such as velocity or

angular acceleration and are usually not accessible as measurements. Hence observations

such as y
¥
(t), y

F
(t-l),..., u

¥
(t), u

F
(t-l),... shall be used as inputs to the BNN controller

instead of the direct measurements. In addition, v(t) (the reference input for the model

6
This is equivalent to model tracking, if r(t) is the output of the model system given a

reference input v(t), i.e. D(q)r(t) = v(t).

25

reference system) instead of r(t) shall be used. Likewise the same state observations and

D(q)y(t) (since v(t) is used) shall then be used to form the input vector for the BNN

learning. This keeps the approach completely identical to that of the previous case.

For systems described by Model 3 and Model 4, the required forms of control u(t)

for model tracking are

g[u(t)Mt-D,~Mt-m + l)]= -A y(t),y(t-l),...,y(t-n+l)] + r(t) ,
(2-13)

h[y(t),y(t-l),...,y(t-n + l)Mt)Mt-l),..,u(t-m + l)] = r(t) (2-14)

respectively, provided the inverses of gf-J and hf-J exist and are unique. These can be

implemented as long as the BNN can be taught to emulate these nonlinear mapping of

ff-J and the inverses of gf-] and h[-J, so that they will generate the appropriate u(t) given

the measurements y(t), y(t-l),.... u(t -1), u(t-2),... and r(t). Since a suitable regression

equation in each case can be obtained by replacing r(t) with y(t), the BNN can be taught

using these regression equations.

To keep the approach consistent with the previous cases, observations such as yF(t),

y
F
(t-l),..., u

F
(t), u

?
(t-l),... shall be used as inputs to the BNN for both learning and

control. In the control phase, v(t) instead of r(t) shall be used. In the learning phase,

D(q)y(t) shall replace v(t). Therefore in all cases, the structure in Figure 8 can be

employed.

With least-squares estimator DMRAC, the parameter estimation is carried out on-

line, usually starting with arbitrary states (normally zero) for all the parameters. It can

be shown that the LTI system under control will be stable even under such conditions.

26

However, for the BNN DMRAC, this cannot be fully assured. Due to the nonlinearities

of the system and the BNN, there is yet no general means or conditions to assure the

stability of the controlled system when starting with an untrained BNN. Also the output

v(t)

SWITCH POSITION

1: CONTROL
2: ESTIMATION

INVERSE
MODEL

t\ r
D(q)

BNN
ESTIMATOR
CONTROLLER

u(t)
•

UNKNOWN
SYSTEM

OBSERVER

a(q)

y(0

u
F
(t) y

F
(t)

Figure 8. Structure of the BNN DMRAC

of the BNN has a saturation limit due to the use of a saturating nonlinear function in each

neuron. Hence, it is very likely that by applying an untrained BNN directly to control

the unknown nonlinear system instability in some cases will result. Hence, the training

for the BNN is broken into two phases: off-line and on-line.

1. Off-line Learning

The off-line training phase uses an arbitrary input u(t) to drive the system and

produce the output y(t). From these measurements, <k(t) in equation (1-10) is formed and

27

used as input vector to the BNN under training. The desired output given this input is

q'u(t) and shall be compared to the actual BNN output to obtain the output error. This

is then used for BNN learning as described in Section A. The procedure for off-line

training can be rationalized as follows: Assume that there exist a controller when driven

by [u
F
(t), u

F
(t-l),..., y

F
(t), y

F
(t-J),... v(t)]

T
generates the required u(t) so that the

controlled system tracks the specified reference model. The input vector for the estimator

and the desired output vector will then be [q~
T

u
F
(t), q"*if(t~l),...

t
q'

T

y
F
(t), q' r

y
F
(t-l),..., q

r

D(q)y(t)]
T and q'u(t), respectively. We note that v(t) is not required in this input vector.

Hence there is no need to know v(t) directly. As a corollary, u(t) can then be chosen

arbitrarily.

2. On-line Learning

Having trained the BNN off-line, the on-line training can then be conducted. On-

line training for the BNN is identical to the procedures used for on-line recursive least

squares estimation. The BNN continues to learn (by updating its weights at each time

step) based on input vector $(t) and desired output q' r

u(t) as in the off-line learning.

Upon each update, the BNN is used as the controller with $
c
(t) as the input vector. The

control signal generated is then used to drive the system. Figure 9 illustrates both the off-

line learning and the on-line learning and control algorithms discussed.

28

u(t)

•cW OFFLINE

ONLINE

ALGORITHM FOR
BNN-BASED DMRAC
ESTIMATION AND

CONTROL

u(t)

S SYSTEM

^k.

r-STEP
DELAY

<Jl

OBSERVER

0(t)

\|/ u(t-r)
o
BNN

^
LEARNING
ALGORITHM]

Figure 9: Off-line and On-line Learning Algorithm

29

m. SIMULATIONS, RESULTS AND DISCUSSIONS

A. EXPERIMENTING WITH THE BNN DMRAC

In this section, the results of the experiments using the BNN DMRAC on various

nonlinear SISO systems, are presented. Four experiments were conducted using software

simulations, covering the control of the four classes of unknown nonlinear systems

considered in Chapter II. The main purpose of these experiments is to see under what

conditions the proposed BNN DMRAC works. The software simulation programs used

in these experiments are listed in Appendix C.

In the next section, some important general observations regarding the controller,

its design and implementation are discussed.

1. Experiment 1: System Model 1

In the first experiment, a nonlinear system in the class described by Model 1 is to

be controlled by a BNN DMRAC. Its discrete-time model is governed by the difference

equation

y(t+l)=a
iy
(t)+a

2
y(t-l)+g[u(t)] . (3-1)

The parameters a
x
= 0.3, a2

= 0.6 and the nonlinear function gfxj = x3, + 0.3X
2

- 0.4*

are assumed unknown to the controller. As discussed earlier, by replacing g[u(t)] by w(t),

30

an equivalent linear system is obtained: A
e<i
(q)y(t) = B^(q)w(t), where the polynomial

operators A^(q) = q
2

- 0.3q - 0.6, and B^(q) = q, and q is the forward time-shift

operator. The degree of A^fq) is n = 2 while that of B^(q) ism = 1. Assuming that

these are known, the following observer,

a(qMq-o.i)(q-o.05) ,

(3-2)

*(0 =

of degree n = 2, was chosen for the design. Since (n - m) = 1, the reference model of

degree 1 was specified as (q - O.S)y(t) = v(t).

Using a BNN estimator, the input vector at time, t for BNN learning is given by

u
F
(t-l)

u F
(t-2)

y
F
(t-l) <3

"3)

y
F
(t-2)

[(l-0.Zq- l
)y(t)\

where u
¥
(t) = q'2a(q)u(t-l) and y*(t) = q'2a(q)y(t-l). The desired BNN output is u(t-l).

According to the suggested training procedures, the BNN was first trained off-line. The

training set generated from an training input u(t) and the resulting open-loop system

output y(t), are shown in Figure 10. The training set consisted of 200 data points each

for the input and output measurements, u(t) and y(t). u(t) is a sum of sinusoids with

different magnitudes and phases, each with a small random varying phase component.

From the data set, 200 sets of input vectors in the form of equation (3-3) were obtained.

The magnitude of u(t) was adjusted such that u(t) is always within the range ±0.8 while

the norm of each input vector <b(t) for BNN training was kept less than 1. The input

31

vector with the associated desired output u(t-l) were then presented in a random order

to the BNN for learning. After 50 passes through the entire set of input vectors (i.e.

Trpining Output y(t)

50 100 150 200

Tim* Index

50 100 150 200

Time Index

0.5

-0.5
50 100 150 200

Time Index

50 100 150

Time Index

200

Figure 10: Off-line Training Data. System Model 1

.

10,000 training examples), the BNN was tested with a different set of input u(t) and

output y(t), as shown in Figure 11. In the test, the BNN estimator was fed the input

vector of equation (3-3) formed with the new data set. The BNN output d(t) is then

compared to u(t). No learning takes place during testing. The result is shown in Figure

12. As shown, u(t) was almost identical to u(t), indicating that the BNN had been

adequately trained.

The BNN was next placed on-line to control the system. During the on-line control

mode, the BNN recursively learns to adapt to the required control structure and

parameters. During the learning phase, the BNN estimator was fed with the input vector

i?(t) as in equation (3-3) and the desired output u(t-l). During the control phase, the input

32

-0.5

0.5

-0.5

50 100 150 200

Time Index

Filtered Test Input uF(t)

50 100 150 200

Time index

0.5 -

-0.5

-1

Teat Output y(t)

50 100 150 200

Time Index

1

Filtered Test Output yF(t)

50 100 150 200

Time Index

Figure 11: Test Data for Off-line Training of the BNN DMRAC.

0.3

0.2

0.1

System Model 1; Comparing Actuol Input ond N—Network Output

-0.1

-0.2

-0.3
20 40 60 80 100 120 140 160 180 200

- Actuol NN 0/P

Figure 12: Test Result for Off-line trained BNN DMRAC.

vector to the BNN was replaced by

33

*
e(0

=

u
F
(t)

u
F
(t-l)

y
F
(t)

y
F
(t-D

v(r)

(3-4)

to generate u(t). The result of one such experiment is shown in Figure 13. In this

System Model 1: Actuol () ond Deiirtd Model () Outputs
! 1 !

'""'
' ' — -- t

" T -
I

1

7T~
|

f \

I

0.2

0.13 -

0.1

0.05

-0.05 -

-0.1 -

-0.15 -

-0.2 -

-0.23
50 100 150 200 250 300 350 400 *50 500

Time Index

Figure 13. On-line Control. System Model 1.

experiment, a 5000-point reference input v(t) was used. The output of the controlled

system are compared to that of the reference model in the figure (only the first 500

points are shown), which had been given the same reference input v(t). It can be seen

that the unknown nonlinear system has been successfully controlled by the BNN

DMRAC.

34

On the other hand, a DMRAC designed with a least-squares estimator, assuming

the unknown system is LTI, failed to work for this system. Hence, the BNN DMRAC

actually offers a viable method to control such an unknown nonlinear system while the

conventional technique failed.

Other experiments conducted showed that the BNN DMRAC performs its control

function reasonably well for various types of inputs. However, for inputs with high

frequency components (with respect to the sampling rate), the controlled system became

quite oscillatory. It could not track the reference model well in this situation. In addition,

the controller would also sometimes saturate during the start of on-line control (and

learning) and therefore fails to control the system. It is postulated that the solution to this

problem is to increase the sampling rate and/or to increase the number of neurons and

hidden layers used in the BNN. This arises from the observations that the BNN can

usually emulate a 'smoother' function with lesser number of neurons and lesser training.

There seems to be a Nyquist-like relationship between the 'smoothness' of the nonlinear

function the BNN seeks to emulate and the number of neurons it requires. Off-line

training with more appropriate training data (i.e. training signals containing similar

frequency characteristics as the actual signals experienced by the controlled system), and

adjusting the learning parameters also helps to improve the tracking performance and

avoid the saturation. Unfortunately, there is still no general rule to help select the most

appropriate learning parameters. Hence a great deal of experimentation is usually

required.

35

2. Experiment 2: System Model 2

In the next experiment, a nonlinear system in the class described by Model 2 is

used. It is governed by

*+i) = mttvwhw + M(f) . 0-5)
l +y(02 +},(r-i)

2

The nonlinear mapping of the auto-regressive variables in the difference equation is

unknown to the controller. It can be seen that the following control signal

u(f)
- J*W'-l>b<0+2.3]] + m (3_6)

[Uy(t)2 + y(/-l)
2

J

will allow y(t) to track r(t) and hence, achieve model following if D(q)r(t) = v(t). A

regression equation for the controlled system is obtained using equation (3-6) with r(t)

replaced by y(t). For a consistent approach, observations u
?
(t), y

?
(t) and input v(t) shall

be used instead of u(t) y(t) and r(t) respectively. The input to the BNN estimator shall

be the regressor vector $(t) of equation (1-11). The desired output for the BNN estimator

is q'u(t). $
c
(t) in equation (1-14) is the input vector during the control phase. Treada-

of the equivalent A(q), n — 2 and the order of equivalent B(q), m = 1 were assumed

known. The observer a(q) in equation (3-2) was again chosen. The same reference model

of degree (2-1) was also used. Therefore, the BNN estimator input vector at time t is

given by equation (3-3). The same procedures for off-line training, testing and on-line

control-plus-learning were employed. The BNN estimator was first trained off-line with

50 passes through a 200-point training set. To test the off-line trained BNN, another set

of data generated from a different u(t) and y(t) was used. The input vectors formed from

36

this data set were fed into the BNN to generate the output u(t). This was compared to

actual u(t). The test result is shown in Figure 14. Again, u(t) was almost identical to u(t),

System Model 2: Comparing Actual Input and N— Network Output

-0.25
200

Figure 14: Test Result for Off-line Trained BNN-DMRAC.

indicating that the BNN was adequately trained.

Finally, the BNN was placed on-line to control, and learn the control structure and

estimate the parameters simultaneously. The result of one experiment is shown in Figure

15. As shown, the system with the BNN DMRAC successfully tracked the model

reference system very closely. A number of other experiments were conducted and the

results show that the BNN DMRAC consistently performs its function well. To optimize

the performance of the control system, many different learning parameters and training

data were tried. However, once a trained BNN works, it tracks the reference model very

well for inputs with similar characteristics.

37

0.03
Sytt«m Modd 2: Actual () ond D««!r«d Modti (...) Outputs

-0.05 -

-0.1

-0.15 -

-0.2

-0.25

- • i t- » <
| ^V*"*" f

*"
i^f'

"

- i <• i <• I <• *^*»wi !U»^.. i -

50 100 150 200 250 300

Tim# Indax

350 4-00 4-50 500

Figure 15: On-line Control. System Model 2.

3. Experiment 3: System Model 3

In this experiment, the nonlinear system is governed by:

y(r+l) = y(0

l+y(r)
2

+ u(t)
3

. (3-7)

Again, the nonlinearities associated with the auto-regressive variable (y(t) only) and the

input u(t) are assumed unknown to the controller. The following control signal will allow

y(t) to track r(t) and achieve model following if D(q)r(t) = v(t):

38

"(*) = 3

N

2&- + r(t)
(3-8)

1«3W

One suitable regression equation for the controlled system is equation (3-8) with r(t)

replaced by y(t). Again for consistency, observations u
F
(t), y

F
(t) and the input v(t) shall

be used instead of u(t), y(t) and r(t), respectively.

In this design, instead of using the maximum order of the system n = 1, it was

assumed that n = 2. The degree of B(q) was assumed to be 1 even though it is of degree

zero. The BNN estimator input vector at time t is again the identical to the one given in

equation (3-3). The desired output is u(t-l). The observer a(q) was chosen as a(q) = (q -

0.03) (q - 0.2). The reference model chosen was as (q - Q.6)y(t) = v(t).

The same training and testing procedures as in first simulation were adopted. Again

the BNN estimator was first trained off-line with 50 passes through a training set. To test

the trained BNN, another set of data generated from a different u(t) and y(t) were used.

The test result shown in Figure 16 allows for the comparison of u(t) and u(t). Again the

estimate u(t) tracks u(t) very well.

Next, the BNN was placed on-line to control the system. The result of one such

experiment is shown in Figure 17. In this simulation, even though a higher order was

assumed for the unknown system, the BNN controller managed to perform quite well.

Simulations with different inputs were conducted and the results again showed that the

BNN DMRAC performs reasonably well for inputs with similar characteristics.

39

0.3

0.2 —

Model System 3: Comparing Actuol Input ond N—Network Output

0.1 —

-0.1 —

-0.2 -

-0.3

X •/• »
f

\^y^/....> *,.<. 1 <Y yy/ZSy
I , ,/, ,\

- > > * <..v.....v.....< < i .v..,
\j. _

- i
\

i i i i i \ i-\

20 40 60 80 100 120 14-0 160 180 200

Actual NN 0/P

Figure 16: Test Result for Off-line trained BNN DMRAC.

Sy»t«m Modal 3: Actual (.) ond Daalrad Modal () Output*

1 OO ISO 200 2SO 300 350 400

Tlrrta Irtda x

Figure 17: On-line Control. System Model 3.

40

4. Experiment 4: System Model 4

In the final experiment, the nonlinear system is governed by:

y(t+1) =
y(t)y(t-l)y(t-2)u(t-l)[y(t-2) + l] + ujt)

Uyit-l)1
* v(r-2)

2
(3-9)

The nonlinear mapping of the difference equation is unknown to the controller. The

following control signal will however allow y(t) to track r(t)\

u(t) - m (-(ymt-i)y(t-2Mt-i)iy(t-2) + i)
+

\

{ vv(f)

where w(t) = 1 + y(r-l)
2 + y(t-2f

(3-10)

Again, a regression equation for the controlled system is equation (3-10) with r(t)

replaced by y(t). For consistency, observations u
?
(t), y

F
(t) and input v(t) will be used

instead of u(t), y(t) and r(t). The maximum order of the system n = 3 is assumed to be

known. The observer oc(q) — q(q - 0.03)((7 - 0.05) was chosen. Also the degree of B(q)

is assumed to be 2. Hence the reference model (q - 0J5)y(t) = v(t) of degree (3 - 2) was

chosen. The BNN input vector at time t is

•(0 =

u
F
(t-l)

u\t-2)

u F
(t-3)

y
p
(t-l)

y
F
(t-2)

y
F
(t-3)

(1 -O.TS^MO.

(3-11)

41

where u
F
(t) = q~3ct(q)u(t-l) and y

v
(t) = q'3a(q)y(t-l). The desired output is u(t-l). The

same training and testing procedures as in first experiment were adopted. The BNN

estimator was first trained off-line and tested as before. The result is shown in Figure 18.

0.3

0.2 -

0.1 -

s

-0.1 -

-0.2 -

-0.3

Syetem Model 4-: Compon'ng Actuol Input end N—Network Output
j

// \
// \
// \ :

I

1 1
i

j !

1

^^~^^—

/
It

II

ft

V

i v
: v

V. ft \\

v

J /f\
ft
ft
ft
II

Jl

: // >
: // V
: // \\

:// V
// '

A : :

//: : \\ w Vk !

i h : : \\ / \\
\ // : : \\ / : \\

\ / \ i \/i Vv !

^*"
: \'
: : : \: \ //

•
'•

'• \ v '/

i i i_ i ._. i

20 40 60 80 100 120 140 160 180 200

Actuol NN 0/P

Figure 18: Test Result for Off-line trained BNN DMRAC.

Then with on-line control, the result of one such experiment is shown in Figure 19.

Even though the BNN in this case did not seem to be adequately trained off-line, it was

sufficient for the on-line control to work. Other experiments with various inputs again

showed that the BNN DMRAC performs reasonably well for this class of systems.

However, if the reference input v(t) has high frequency components, the BNN could not

track the reference model. This problem and possible solutions have been discussed

earlier.

42

o.os
Sy»t«m Mod«i *: Actuol () ond D«»ir«d Mod«i () Outputs

-0.05 —

-0.1 -

-0.1 5

-0.2

!

.. —

i

1

! ! ! !

Il

tl

i

it

i

i

il

if
if
il
it

/

>w

1

!

// i V i : //
: « : \\ : : //

'. if : \ if
:ii in : : '/

7 \ i '/

// : \ i
':

if

if : \\ : '/
if : : \\ : //

// : A it
if : : \\ : //
;/ : »\ : : ;/
// : : v\ : //
// ; : \\ : ://
// : : ft i •jl

V '• ' A- if

htu/. i i Sy !....

i
i i

\\ //
\\ //

50 1 00 1 50 200 250 300 350 400 4-50 500

Tinn# Indtx

Figure 19: On-line Control. System Model 4.

B. OBSERVATIONS AND DISCUSSIONS

In this section, some important observations on the controller, the design and

implementation in the experiments are discussed. In general, we observed that the BNN

DMRAC developed in Chapter II works well under certain conditions. These are

described in detail in this section. Although, the generality of these conditions cannot yet

be fully established due to the lack of analysis techniques for these nonlinear systems and

neural network, they have served to developed fairly good controllers for the

experiments. Often the BNN MRAC works very well with sufficient training and careful

tuning of the learning parameters.

43

1. Failure of Least-Squares Estimator DMRAC

In each case, a DMRAC was designed with a least-squares estimator assuming the

unknown system is LTI. Except for system in the second experiment, all the linear

system DMRAC failed to work. Therefore, the BNN DMRAC is an effective technique

in controlling these unknown nonlinear systems which the conventional adaptive control

technique cannot handle. The BNN can be viewed as a generalized estimator which

performs the nonlinear estimation and hence allows the adaptive control technique to be

extended to cover large classes of nonlinear systems.

2. Some General Requirements for the System

Two conditions required for success of the BNN DMRAC are postulated from the

analysis and the experiments. Like the DMRAC designed for unknown LTI systems, the

BNN DMRAC will only work with systems which have a minimum phase property, or

equivalently
7

, the stability of the systems given by the regression equations. It is seen

that estimator and the BNN have to learn from the regression system. If it is unstable,

it is obvious that effective learning cannot take place, in particular, with a BNN.

Another important condition governing the inverse of the nonlinear system is also

postulated: the regression system must be unique. Only then will the BNN be able to

learn the mapping consistently.

7 Minimum phase property applies only to linear systems.

44

3. Assumed Orders of the System

The control system still worked when higher orders were assumed for the system

in the controller design. This was illustrated in experiment 3. A higher order controller

(and observer) would however entail more inputs, and hence a larger BNN. A larger

BNN typically requires more training, hence a longer training period. On the other hand,

in situations where the orders of the system are uncertain, sufficiently high orders can

always be chosen such that they exceed the actual system orders.

4. Stability of Open Loop System

Since off-line training requires the system to be operated in the open-loop, this

procedure cannot be recommended for open-loop unstable systems. There is another

reason why the technique should not be used for an open-loop unstable system. With

unknown and unstable LTI systems, it is still possible to design a stabilizing DMRAC.

However, the control effort required may be very large in order to stabilize the system

(especially during starting-up). In the BNN, the output is limited to the range ±1, since

the hyperbolic tangent function is employed in each neuron. So, this may limit the

required control input needed to achieve stabilization. To overcome this problem, a linear

function for the output neuron was used, thus avoiding the saturation limit of the BNN

output. However, with linear output neuron, it was found that the stability of the learning

algorithm became difficult to maintain. More analysis and experimenting will be required

to explore this approach.

45

5. System Input and Output Scaling

Since the BNN output is limited to the range ± 1 , the desired output of the BNN

under training must be limited to the same range. Therefore scaling of the training input

u(t) for the system (i.e. the BNN output) during off-line or on-line training is always

required so that the limits are not exceeded. Consider next the scaling of the BNN input

vector $(t). In the LMS algorithm, it has been shown [Ref.ll] that the step-size

parameter must be in the range between and 2/)^, where X,,^ is the largest eigenvalue

of the correlation matrix of the input vector, to ensure stability of the LMS learning

algorithm. By appropriately scaling the input vector, it is possible to use the range

between and 1 for the step-size parameter. Drawing a parallel for the BNN training,

it is necessary that the input vector be scaled to a certain range in order to keep the

learning system stable and the learning rate \l, in the range to 1.

In all the experiments, the input u(t) used to generate data for off-line training was

always scaled so that it spanned the range ±0.8. In addition, the norm of the BNN input

vector {$(t)) for learning was limited to < 1. If not, then the input u(t) was further

scaled so that the last condition could be met. This seemed to prevent the BNN from

learning instability in all the experiments, at least, as long as the learning rate /x is kept

between to 1.

The typical operating ranges of a system may however be higher than the operating

ranges used in these simulations. However, this problem can be overcome by scaling if

the normal operating ranges of such a system are known.

46

C. BNN DESIGN AND TRAINING

The issues discussed so far relate primarily to the control system design and the

required conditions under which the BNN DMRAC can be successfully applied. Although

the input and output scaling issues have been addressed, there are still many important

questions related specifically to the design and training of the BNN. This section

discusses some of these issues: the design parameters of the BNN used as a DMRAC,

the adequacy of training and the training regimes. The implementation of the BNN

software simulator is first discussed to provide more detailed background for subsequent

discussions.

1. Implementation of the BNN Software Simulator

For this thesis research, a software BNN simulator was developed. Until neural

network hardware systems or neurocomputers become commonly (and economically)

available, most researchers will work with software simulators for neural networks. It

is fairly simple to emulate the actions of a neuron and an entire neural network in

software. The software approach offers the full flexibility for development, allowing the

user to exercise and experiment freely with the various features of the neural network.

The main drawback of this approach is the slowness of the simulator during the learning

process.

The BNN simulator used is built from a collection of functions developed in the

form of a MATLAB toolbox. The processing required in the BNN can be easily

represented by vector and matrix operations. Hence MATLAB, a high-level programming

47

environment with built-in matrix operators, is ideally suited as a development platform

for the BNN software simulator. Another advantage in using MATLAB is that it comes

with a Control Toolbox which fully supports the simulations of discrete-time system.

The neural network toolbox developed consists of the following functions:

• NET2 and NET3. These functions set up the data structure for a 2 and 3 layer

back-propagation neural network. It takes in a parameter describing the number of

inputs and neurons in the hidden and output layers. It also takes one other

parameter specifying the spreading range of the biased input (this feature shall be

explained later).

• RECALL2 and RECALL3. These are functions which calculate the output vectors

for a 2-layered and 3-layered neural network given an input vector.

• LEARN2 and LEARN3. These are learning functions for the 2-layered and 3-

layered neural networks respectively. By presenting a desired output vector and the

actual neural network output vector, these function updates the synaptic weights

according to the learning rules described in Section B of Chapter II.

• BKPROP2 and BKPROP3. These functions back-propagate the output errors to the

input layer. They are not used in the simulations conducted in this thesis research.

• Other miscellaneous functions including SHUFFLE which randomly shuffles a set

of indices for use in the BNN learning procedure.

The source codes for the toolbox implementations of the functions used in this

thesis research are provided in Appendix D. These MATLAB programs are self-

documented so that they can be used without any other documentation.

2. Design of the BNN

In using a BNN as a DMRAC, the following design parameters must be determined

or specified:

48

• The number of inputs: This is simply determined by the order n assumed for the

nonlinear system. The number of inputs required is (In - 1), which is the size of

the input vector $(t) or $c (t) in equation (1-11) or equation (1-15).

• The number of layers: There is no hard and fast rule in determining the number

of layers for the BNN. In general, we found that a 2-layer network is adequate for

the control of simple low order models such as those used in the simulations. With

more layers, considerably more training is required for the BNN during the off-line

learning phase. Therefore, excessive layers should be avoided wherever possible.

• The number of neurons: The number of neurons in the output layer is of course

determined by the number of outputs. Since the research here deals with SISO

systems, only one output neuron is required in all cases. The choice of the number

of neurons required in each hidden layer is another grey area. In our experiments,

using 2-layer BNN, the number of hidden neurons taken to be 3-4 times the

number of inputs seemed to work adequately.

• The nonlinear mapping: The choice of nonlinear mapping for the neuron depends

on applications. In control system design, the control input is commonly in the

range + R, where R a real number. This requires the output neurons of the

controller to match this range. Therefore an odd symmetric function is suitable for

the neuron. In the BNN simulator used, the hyperbolic tangent function (tanh[-])

is used in all neurons.

3. Adequacy of Training

In off-line training of the neural networks, it is important to determine the adequacy

of training in order to decide if the training can be terminated. There are several ways

to ensure that a BNN has been trained adequately. One way is to calculate the mean

square output errors over a reasonable time window. Since there is no absolute level

(except that it should be 'small') for this value to indicate if the BNN is trained

sufficiently, the mean square error at different training cycles can computed and

compared. When the error becomes almost constant, assuming that the training set has

been carefully chosen and the BNN has been adequately designed, then the learning cycle

49

can be considered as done. The BNN is said to have converged. Another way is to check

the singular value decomposition (SVD) of the synaptic weight matrices W11
, W21

,

When the SVD of these matrices remain almost constant, the learning cycle can usually

be considered as done.

4. Neural Network Training

The most important factors affecting the BNN learning are

1. the ranges of the inputs and desired output values used in training,

2. the characteristics and the size of the training set, and the number of passes through

the training sets, and

3. the learning regime.

The first item has already been discussed. The second item concerns itself mainly

with how well the BNN converges. In general, the larger the training set, the better the

convergence will be. Here, the amount of training time to be expended or the number

of available training examples collected limits of the size of the training set. What is

more important though is the characteristics of the training examples in the training set.

Drawing a parallel from adaptive control theory, the condition of "persistent excitation"

must exist in a training set. Loosely speaking, the training set must excites all the system

modes under normal operating conditions. This then allows the BNN to learn to emulate

the required regression form thoroughly. The off-line training for all simulations

conducted here used u(t) with 200 to 500 data-points to generate the training set. u(t) is

50

a sum of at least 3 sinusoids with different magnitudes and phases, each with a small

random varying phase component. In terms of persistency of excitation, this seemed

adequate. The use of uniformly distributed random white noise sequences were also quite

found to be adequate. The small training set also seemed adequate in all the experiments

when each training example was repeatedly presented (at different times and in random

order, of course) to the BNN. This randomized presentation sequence has been observed

to help the BNN learning to converge much faster. In most cases, 20 to 30 repeated

passes through the entire 200-point training sets were adequate to allow the trained BNN

to produces U(t) that was very close to u(t).

The selection of learning rates and momentum rates as a function of training cycles

for different layers of the BNN, make up the training regime. The training regimes is

still an important area for more research. This is the area where a lot of experimentation

is required due to the lack of strict rules and guidelines to ensure (1) stability of the

learning process and (2) good and fast convergence. The training regime determines

strongly how fast the learning process proceeds. The learning rates and momentum rates

can be separately assigned for each layer. For simplicity, they were usually kept identical

in our experiments. The following two rules of thumb generally used by many neural

network researchers were adopted in the learning process. One, the learning rate should

be decreased as the number of training cycles increase. Two, larger momentum rate

should be used in the early phases of training and then lowered for the final phase of

training. In the experiments, learning rates typically > 0.8 and momentum rates > 0.4

were chosen for the first 5,000 training cycles in off-line training. Then they were

51

normally set to < 0.6 for the rest of the training cycles. During on-line learning, the

momentum term was usually set to < 0.2 because it is expected that the off-line trained

BNN would require only minor adjustment in its synaptic weights with further on-line

training. The techniques used in checking for convergence of off-line learning can also

be used to dynamically adjust the learning rates daring on-line training. For example, the

average rate of change of the SVD's of the weight matrices can be used as a guide in

setting the learning schedule: when the average rate is, say half of the initial value, a

smaller learning rate is switched in.

There is a lot of experimenting involved in the selection of both the learning rates

and momentum rates. Hence, the training process will benefit greatly with the

development of stricter rules regarding the selection of these parameters.

5. Setting the Bias Inputs

Each neuron has a bias input. In the BNN software simulator, this input can set to

zero. However, a BNN with zero bias inputs for all the neurons can only output zero

when its input vector is 0. Therefore, this BNN can only emulate functions which the

property f(0) — 0. This form of neural network is usually not sufficiently general for use

as a DMRAC for nonlinear systems. Hence fixed non-zero bias inputs are used. They

are fixed by spreading the synaptic weights associated with the bias inputs across a range,

±R. R is normally selected to between 1 to 2. These weights are kept unchanged even

during learning while the bias inputs are set to 1 . This feature has been incorporated into

the BNN simulator by specifying the spread range R during the initialization of the

52

network. The bias of the output neuron (since there is only one output neuron in our

BNN DMRAC) is kept at a fixed value +R.

Alternatively, fixed bias inputs can be used while allowing the associated synaptic

weights to vary in the learning process. However, it was found that considerably more

off-line training were needed for convergence using this approach. Convergence was also

difficult to achieve and the mean square errors of the BNN output and the desired output

tended to change erratically between different passes during the on-line training with

different reference inputs.

53

IV. CONCLUSIONS

A. SUMMARY

Starting with the development of a direct model reference adaptive controller for

LTI systems with unknown parameters, the basic structure for a neural network-based

adaptive controller was advocated. The DMRAC for LTI systems was extended to

nonlinear systems by training a BNN to emulate a suitable nonlinear regression form that

describes the system under consideration.

The control of four general classes of unknown nonlinear systems, modelled in

discrete-time, using the BNN DMRAC was considered. The specific structure for the

BNN DMRAC of these four classes of systems was developed.

B. IMPORTANT RESULTS

Experiments in BNN-based adaptive control were conducted using four specific

examples of nonlinear systems, belonging to four different classes of systems. The main

observations from these experiments are summarized below:

(1) The results indicated that BNN DMRAC works well in the control of these

unknown nonlinear systems. It was also seen that in most cases, the standard

least-squares estimator DMRAC designed using LTI assumption failed to work

for these systems.

54

(2) The design approach is quite specific as far as the controller structure is

concerned. The general conditions for successful application of BNN-based

DMRAC can easily be satisfied.

(3) Off-line training of the BNN is required. The amount of off-line training required

is quite insignificant. The system is required to be open-loop stable.

(4) The performance of a trained control system depends somewhat on the inputs

used. For inputs with high frequency contents with respect to the sampling rate,

the controlled system tends to become quite oscillatory and does not track the

reference model well. Some solutions were proposed for this problem.

(5) The BNN training does requires significant attention and experimentation. No
firm rules are yet available for the training regimes, the scaling of the inputs and

output, and the use of bias inputs. Any breakthrough in the development of

general analysis techniques to help establish conditions for stability of both the

BNN learning system and the closed loop system will significantly boost the

usefulness of this technique.

The general requirements for the unknown nonlinear systems to ensure the success

of the BNN DMRAC are postulated from the analysis and observations made in the

experiments:

• A suitable control structure for which a BNN can emulate must exist. For the BNN
to be able to emulate this nonlinear controller, the functional mapping of the

controller must be continuous (such that a BNN can emulate this controller).

• In addition, the system should be equivalently minimum phase, in the sense that the

regression form which the BNN learns to emulate must be stable and unique.

• The open-loop nonlinear system should be inherently stable for the off-line training.

• The orders (n and m) of the system, or at least their lower bounds, must be known.

55

C. FURTHER RESEARCH AND DEVELOPMENT

In this thesis research, the emphasis was to develop a structure for direct adaptive

control of certain classes for unknown nonlinear systems using the BNN. The results of

the experiments showed clearly that the BNN DMRAC in the proposed form can work,

at least for systems similar to those considered in the experiments. Some general

conditions required of the nonlinear systems have also been postulated. The general

guidelines used to keep the learning algorithm stable and the convergence fast, worked

well in the experiments. However, more exact conditions governing the successful

employment of the BNN DMRAC, the stability of the closed system, and stricter rules

on the choices of the parameters in the BNN design (e.g. the number of hidden layers,

number of neurons, etc.) should be established.

1. Stability Conditions for the BNN DMRAC

Development of sufficient conditions to establish the stability of the BNN DMRAC

controlled system is the most critical aspect required for the acceptance of this technique

for real-world applications. However, it will definitely entail much more research since

there are currently no established analytical tools available for use in these nonlinear

systems and neural networks. Furthermore, the stability of the closed loop control system

is affected not only by the open loop nonlinear system and the BNN design, but also the

types and operating range of the input and the training regimes employed.

56

2. Design of the BNN

In the design of the BNN, the selection of the number of layers, neurons, the type

of nonlinear transformation, etc., is still very much an art. This area is definitely needs

further research. Stricter rules governing the choices of number of layers, the number

of neurons in each layers, the use of bias inputs and even the appropriate choice of

nonlinear function for the neuron should be generated. The correct design should allow

the BNN to fully emulate the appropriate unknown nonlinear functions, such that it will

work with the full range of the required control input.

3. BNN Learning

The selection of appropriate training data and the learning schedule, which

determine the goodness and speed of convergence are important aspects of this technique.

Stricter rules governing the characteristics of training data and the establishment of a

learning schedule will greatly benefit this technique. Specifically, rules should be

developed to determine the required 'persistency' in the excitation of the training data.

Also the learning schedule should be related to the convergence rate.

57

APPENDIX A. DMRAC DESIGN FOR UNKNOWN LTI SYSTEMS

A direct model-reference adaptive controller was designed and implemented to

control an unknown linear-time-invariant system. The design approach and the structure

of the controller was analyzed in Section D of Chapter I. The recursive least-square

estimation technique shall be used for control parameter estimation.

The unknown LTI system to be controlled is described by the difference equation:

y(i) - 0.2v(f-l) + 0.9y(t-2) = 3u(t-\) .
(A- 1)

Defining q as the forward time shift operator, then

A(q) = q
2

- 0.2q + 0.9
,

B(q) = 3q .

This system has two poles at Ps
x
and Ps2 obtained by setting 1 - 0.2z"' + 0.9z~

2 =

which gives Psx2 = 0. 1 ± 0.9434i and a zero at Zs
x
= by setting 3z

l = 0. Suppose

the closed loop system is required to track the reference model

yw(r)-0.8yw(r-l)=v(r-l) .
(A-2)

D(q) = (q - 0.8). It has one pole, Pm
x
= 0.8.

If the system is known, then by state-feedback, one pole of the closed loop system

must be placed at Pm
x

. The remaining pole must therefore be placed at Zs
x , so that it is

58

cancelled by the closed loop zero. Hence the desired characteristics polynomial of the

closed loop system shall be

p\q) = (q - Pmflq - Zs
x
) = (q - 0.8)$ (A-3)

The state-space equation of the system is:

'0.2 -0.9V x(t)
>

, 1 lx(f-l)
;

/i\

0)

(A-4)

and

y(t) = (1 0)

(
x(t)

y

x(t-l\

(A-5)

or more compactly,

x(t+l) = * • x(t) + T-u(t)

y(t) = C-x(t) .

First assume all states are accessible. Using state-feedback, u(t) = -L-x(t) + v(t), L the

feedback gain, the closed loop system is

x(r+l) = [<D - TL]x(t) + v(0

y(t) = C x(t) .

(A-6)

L can be obtained by equating the characteristic polynomial of the closed loop system

function derived from (A-6) to the desired characteristic polynomial in equation (A-3)

giving

L = [-0.6 -0.9].

59

Suppose only u(t) and y(t) are accessible while the states x(t) are not, then an

observer is needed. The estimated states x(t) is then used for state feedback

u(f) = L x(t) + v(0 . (A "7)

A Luenberger or steady-state Kalman filter observer is given by

f(r+i) = <& x(t) + r u(t) + * ixo - c i(0]
,

(A_8)

where K is the observer gain. In the Luenberger observer, the observer gain K
x
can be

obtained by first designating the observer pole locations, Pol2 (often chosen so that the

observer dynamics is approximately four times faster than the system, if that is known).

Then K
x
is obtained by equating the characteristics polynomial of ($ - K

X
C) to (q-Po^iq-

Po2). Choosing Pol2 =
\
Ps l<2 I

4
LES.\,n tne resulting observer gain is K

x

= [0.0097

0.0903]'.

For the Kalman filter, the covariance matrices Q and R of the state disturbances

and output measurement noise must first be specified. Then Kv , the steady-state Kalman

filter gain is obtained by solving the arithmetic Riccati equation. Choosing Q = I and

R = 1, Kk = [0.0033 -0.3492]7 .

From equations (A-7) and (A-8), the following equation is obtained:

«(f+l) = L [ql - * + K C\
lT u(t) +

(A_9)

L [ql - <I> + K C\
lKy(t) + v(0 .

This controller hence has the following structure:

60

u(t) = -M«(r) + ^ly(0 + v(r)
,

(A- 10)

where a(q) is the characteristic polynomial of the observer. It can be chosen using the

Luenberger or steady-state Kalman filter observers.

Using the partial state z(t), equation (A-l) can be written as follows:

A(q)z(t) = u(t)
,

y(t) = B(q)z(t) .

Combining the above with (A- 10), we have equation (1-5). To obtain the required closed

loop behaviour, we set

a(q)A(q) - Kq)A(q) - k(q)B(q) = a(q)p'(q)
,

(A-H)

so that p*(q)y(t) = B(q)v(t) becomes the reference model by choosing/?*^ = l/b
x
and

D(q)B(q) = (z - Pm
x){ z - Zs

x).

Re-arranging equation (A-ll), we get

h(q)A(q) * k(q)B(q) = a(q) [A(q) - p'(q)] .
(A " 12)

Equation (A-12) is the Diophantine equation. Since ^4^ and B(q) are relatively co-prime

(i.e. no pole-zero cancellation), a solution for h(q) and k(q) is guaranteed. h(q) and k(q)

are solved by forming the Sylvseter matrix using the two different observers, the

Luenberger and the Kalman filter observers. The two characteristics polynomials a
x (q)

and ak (q) are:

a
{ (q) = q

2 - 0.170&7 + 0.6561
,

(*M = q
2 -0A9q + 1.8427 .

61

Solving the equation (A- 12), the results in Table A-l are obtained for the unknown

polynomials h(q) = h
xq + h2 and k(q) = k

xq + k2 .

Luenberger observer Kalman observer

hi
h2
kl
k2

0.6
0.6561
0.0871

-0.0563

0.6
1.8427

-0.3123
0.25 4

TABLE A.l: Coefficients of h(q) and k(q)

The complete computer solution for h (q) and k (q) are

logged below below:

System y(t) - 0.2y(t-l) + 0.9y(t-2) = 3u(t-l)

Aq = 1.0000 -0.2000 0.9000

Bq = 3

Poles of the system

Poles =

0.1000 + 0.9434i

0.1000- 0.9434i

The stale-space representation of the system

Phi =

0.2000 -0.9000

1.0000

Gma =

1

Luenberger Observer Poles

ObsPoles =

0.0854 + 0.8055i

0.0854 - 0.8055i

The Luenberger observer gain Kl

Kl =

0.0097

0.0903

Kalman filler observer: Choose the noise covariance

matrices

Q =

1

1

c =

3

D =

(a) Estimated State-Feedback Approaches

R =

1

The steady-state Kalman observer gain Kk

Kk =

0.0033

-0.3492

62

Desired system (Reference model): D(q)ym(t) = v(t)

D =

1.0000 -0.8000

Desired Closed Loop Poles

DsrPoles =

0.8000

System Feedback Gain L
place: ndigits= 16

0.6561

0.0871

-0.0563

For the Kalman Observer

hkk =

0.6000

1.8427

-0.3123

0.2544

-0.6000 -0.9000

(b) Diophantine Approach

Form the Sylvester matrix

Ms =

1.0000

-0.2000 1.0000 3.0000

0.9000 -0.2000 3.0000

0.9000

Desired system behaviour: p*(q)

Pstar =

1.0000 -0.8000

Observer characteristic polynomials: a(q)

For the Luenberger Observer

Alphal =

1.0000 -0.1708 0.6561

Fl =

0.6000

0.7975

0.2400

0.5905

For the Kalman Observer

KObsPoles =

0.0950 + 1.354H

0.0950- 1.3541i

Alphak =

1.0000 -0.1900 1.8427

Fk =

0.6000

0.7860

0.9346

1.6585

Controller parameters: h(q) and k(q)

For the Luenberger Observer

hkl =

0.6000

63

Since A(q) and B(q) are actually unknown, an estimator is required. Applying the

polynomial in equation (A- 12) to z(t), the partial state, the following system is obtained:

a(q)u(t) = h(q)u(t) + k(q)y(t) +
a(q

]

D(q)
y(t) •

In this case, equation (A- 13) can be written as

u(t) = K + h
2q

-l

tt
l

+ a2^ *
+ a 3^

2
g"V)

^i
+ tyi~

l

a j
+ a

2^
_1

+ a
3
q'2

q'yit)
D(q)

y(t)

Setting,

(a, + a2q
l + a,)f(t) = y(t-l),

(a, + ct2q
x + a3)u

F
(t) = u(t-l),

equation (A- 14) becomes

(A-13)

(A-14)

'V

u(t-\) ={y F
{t-\) y

F
(t-2) u

F
{t-\) u

F
(t-2) q- l

D(q)y(t)
)

*2

(A-15)

Based on the above regression equation (A-15) above and using least-squares estimation

technique, the recursive estimate for the unknown parameter vector in equation (A-15)

64

can be obtained using equations (1-11) and (1-12). Then using the estimated parameter

vector, control can be effected using equation (A- 10).

Using MATLAB, the DMRAC with a least squares estimator developed above is

implemented. The programs for all the experiments conducted with the DMRAC are

attached at the end of this Appendix.

Experimental Results and Comments:

Figures A.l to A. 6 show that the adaptive controller managed to recursively

converge very quickly to the correct values as that obtained in solving the Diophantine

equation (assuming the plant is known). The observer characteristics polynomial u
x (q)

chosen in the first two cases is based on the Luenberger observer. In the next two cases,

the characteristics polynomial otk (q) is based on the Kalman filter. The convergence is

quite independent of the input v(t). Many different frequencies were tried. Figure A.l

and A. 3 shows the use of a high frequency v(t) while Figure A. 2 and A. 4 show the use

of a low frequency v(t). As the system is linear-time invariant, we can stop the adaptation

after a while. The result of model following control is close to perfect even without

further adaptation.

Using a sinusoidal v(t) instead of the square wave, Figure A. 5 and A. 6 shows

almost identical results for the control parameters after a few iterations. Convergence of

the parameters does take a little longer in these cases.

P(0) has been chosen in the recursive least squares algorithm to be 1000*1. With

smaller values of P(0), slower convergence of the parameters is observed.

65

nput v(t)

Theto-~(t) Luenberger Oblfrvir
i

' '
\ i

'
i i

100

o.s -

-0.5
O 10 20 30
hi -0.59979 K2-0.6558

40 50 60 70 80 90 100

k1 -0.08725 k2--0.05618 b1 -3.0001 2

Syetem Output and the model output

— 1

90 100

Figure A-l: Least-Squares Estimator DMRAC Experiment 1

66

0.5

—

-0.5

Input v(t)

-1
10 20 30 40 50 60 70 80 90 100

frequency 1/dt Hz

Theto-(t) Luenberger Obnrvtr

0.5

-0.5

\?

10 20 30
hi -0.59989 h2-0. 65593

40 50 60 70 80 90
k1-0.08721 k2--0.05619 b1-2. 99971

100

Syetern Output ond the model output

2 -

-2 -

-3 -

-4
10 20 30 AO 50 60 70 80 90 1 OO

During odoptotion

Figure A-2: Least-Squares Estimator DMRAC Experiment 2

67

Input v(t)

Th«to
ggj «,<

olmon Obltrvtr
i i

O 10 20 JO
h1-0. 60056 h2-1. 8*128

4.0 50 60 70 80 00 100

kl--0.3l2 k2-0. 2545 61—3.00118

Sy«t«m Output and th« modtl output

Figure A-3: Least-Squares Estimator DMRAC Experiment 3

68

-0.5 —

Input v(t)

5

5

1 i i I i i 1 i i .

Th«tc2$L Kolmon ObU'-'t'

10 20 30 4.0 50 60 70 80 90 100

Frequency 1/dt Hz

— 1

O 10 20 30

hi -0.60068 h2-1.8*091

4.0 50 60 70 80 90
IO--0.31194 k2-0. 25452 c-1-3.00134

100

Syetem Output ond the model output

3

2

1

1

2

3

4

C

10 20 30 40 50 60

During odoptotion ...

70 80 90 100

Figure A-4: Least-Squares Estimator DMRAC Experiment 4

69

Input v(t)

Theto
=ft? 5

almon Obtcrvir

— 1

O 10 20 JO
hi— 0.600C7 h2— 1.8*101

40 50 60 70 80 OO
k1--0.J1195 k2-0.25*52 bl-3.00129

100

Syetem Output and the model output

Figure A-5: Least-Squares Estimator DMRAC Experiment 5

70

Input v(t)

10 20 JO
h1=0. 61354 h2=1.81848

40 50 60 70 80 90 100

k1 =-0.30807 k2 = 0. 25776 b1 =3.02791

System Output end the model output

1 -

-3 -

-4

-
?'\'f \ *\ *

'. i i4 i \i" \ \
"

- i > i V < ./. i i i A i -.

10 20 30 40 50 60 70 80 90 100

During odoptotlon

Figure A-6: Least-Squares Estimator DMRAC Experiment 6

71

% System y(t) - 0.2y(t-l) + 0.9y(t-2) = 3u(t-l)

%
Aq = [1 -0.2 0.9]

Bq = [3 0]

dispCPoles of the system');

Poles = roots(Aq)

% The stale-space representation of the system

%
[Phi,Gma,C,D] = tf2ss(Bq,Aq)

% Controller Design

%
disp('(a) Estimated State-Feedback Approaches');

disp('Luenberger Observer Poles');

% Choose the observer poles to be four time faster

%
MagPoles = abs(Poles).

A
4; ArgPoles = angle(Poles);

ObsPoles = MagPoles. •(cos(ArgPoles) + i'sin(ArgPoles))

disp('The Luenberger observer gain Kl");

Kl = acker(Phi',C',ObsPoles)'

% Kalman filler observer: Choose the noise

% covariance matrices

%
Q = [1 0; 1], R = [1]

disp('The steady-slate Kalman observer gain Kk');

Kk = inv(Phi) • dlqe(Phi,[l],C,Q,R)

% Slate-feedback gain using estimate

% slate-variables

%
disp('Reference model: D(q)ym(t) = v(t)');

Dq = [1 -0.8]

% Desired poles for the feedback system. One pole

% equal to pole of the reference model, the other

% to cancel the zero (z = -Bq(2)/Bq(l)) of

% the original system.

%
dispCDesired Closed Loop Poles');

DsrPoles = [D(2); -Bq(2)/Bq(l)]

dispfSystem Feedback Gain L');

L = placc(Phi,Gma, DsrPoles)

disp('(b) Diophantine Approach');

dispCForm the Sylvester matrix');

Ms = sylvest(Aq,Bq)

dispCDesired system behaviour: p*(q)');

Pstar = conv(Dq,Bq./Bq(l))

disp('Observer characteristic polynomials: a(q)');

disp('For the Luenberger Observer');

Alphal = conv([l -ObsPoles(l)],[l -ObsPoles(2)])

Fl = conv(Alphal,(Aq - Pstar))';

Fl = Fl(2:length(Fl))

disp('For the Kalman Observer');

KObsPoles = eigfPhi - Kk»C)

Alphak = conv([l -KObsPoles(l)],[l -KObsPoles(2)])

Fk = conv(Alphak,(Aq •

Fk = Fk(2:length(Fk))

Pstar))'

disp('Controller parameters: h(q) and k(q)'),

disp('For the Luenberger Observer');

hkl = invfMs) • Fl

disp('For the Kalman Observer');

hkk = inv(Ms) * Fk

% Number of unknowns hl,h2,

Nu = 2*(length(Aq) - 1) + 1

,kl,k2 1/bl

% Adaptive Controller Design

disp('Time horizon for simulation');

Nt = 1000

dispCGenerating input data');

Tt = (0:Nt-l)/Nt;

if InpType == 'Square',

v = 0.8»sign(sin(2»pi ,Fr*Tt));

else

v = 0.8»sin(2»pi»Fr»Tt);

end;

clg; subplot(211); plot(0:Nt-l,v); grid;

titleClnput v(t)'); pausc(l);

xlabel(sprintf('Frequency %g/dt Hz', Fr));

disp('Observer characteristics polynomial a(q)');

if Obs = = 'L'

Alpha = Alphal

ObStr = "Thela"(l) Luenberger Observer'

else

Alpha = Alphak

ObStr = "Theta"(t) Kalman Observer'

end;

u = zeros(l,Nt);

uf = zeros(l,Nt);

y = zeros(l,Nt);

yf = zeros(l,Nt);

yd = zcros(l,Nt);

P0 = le3»eye(Nu);

P = P0;

disp('Setup the parameter vector 9*(t)');

ThctaHat = zeros(Nu,Nt);

ThetaHat(Nu,l:Nt) = ones(l:Nt);

clc; dispCSimulation begins ... Please wail.');

for indx = 3:Nt,

% Update the plant

y(indx) = -Aq(2:3)» [y(indx-l);y(indx-2)] +
Bq(l)»u(indx-1);

% Filter u(t) and y(t)

uf(indx) = -Alpha(2:3) • fuf(indx-l); ...

uf(indx-2)] + u(indx-l);

yf(indx) = -Alpha(2:3) • [yf(indx-l); ...

yf(indx-2)] + y(indx-l);

yd(indx) = Dq*[y(indx); y(indx-l)];

% Form the regression vector

fi [uf(indx-l); uf(indx-2); yf(indx-l);

yf(indx-2); yd(indx)];

72

% Adaptive update of the parameter estimates

tap = 1 + fi' *P*fi;

ThetaHat(:,indx) = TheUHat(:,indx-l) + ...

P ,
fi

,(u(indx-l)-fi'*ThetaHat(:,indx-l))/tmp;

P = P- P*ri*n'*P/tap;

% Update control action

u(indx) = (ul(indx), uf(indx-l); yf(indx); ...

yf(indx-l); v(indx)]' ...

• ThetaHat(:,indx);

end;

plot(ThetaHat'); grid;

title(ObStr);

ThctaHatO = mean(ThetaHat(:,0.9*Nt:Nt)')'

gtext(sprintf('hl = %g h2= %g\
ThetaHatO(1) ,ThetaHatO(2)))

;

gtext(sprintf('kl = %g k2= %g bl = %g\
ThetaHatO(3) ,TheUHatO(4) , 1 /TheuHatO(5)))

;

funcu'on [Ms] = Sylvest(A, B);

N = length(A);

M = length(B);

Ms = zeros(2'(N-l));

for indx= l:(N-l),

Ms(indx:(indx+N-l),indx) = A(:);

Ms((2»N-indx-M):(2*N-l-indx),(2*N-l-indx)) = B(:);

end:

73

APPENDIX B. BNN DMRAC FOR UNKNOWN LTI SYSTEMS

In this experiment, the least-squares estimator of the DMRAC developed in

Appendix A is replaced directly with a BNN. Simulations results are then presented.

The unknown LTI system is given by equation (A-l) in Appendix A. The same

desired reference model are employed. Therefore, the same regressor vector $(t) in

equation (A- 15) is used as the input for the neural network during training. Hence, the

BNN must have 5 inputs. 20 neurons are employed in the hidden layer. Only a single

neuron is needed in the output to produce the control input.

The BNN is first off-line trained, tested to see if it is adequately trained, and then

put online for simultaneous learning and control of the system. These steps are

accomplished by the programs attached: OFFLIN.M, TSTLIN.M and ONLIN.M. Similar

procedures for off-line training, testing and on-line training are used subsequently for the

BNN DMRAC for unknown nonlinear systems. They are discussed in great detail in the

Chapter III and shall not be repeated here.

The results of various experiments are shown in Figures B-l to B-5. It can be

clearly seen that the BNN DMRAC performs as well as the least-squares estimator.

74

0.3

0.2

0.1 -

Compering Actuol Input ond N — Network Output

-0.1 -

-0.2

-0.3

1
I

1
I

' / \ ' '

: // \\ : : :

: i \\ : : :

ill \\ : :

i —

r

; 1
!

i
'/ \ •

'•

i \\ : : : :

// \\ : : : :

// \\ : : : :

V \\: : : :

1 /\
>s_/ »\ : '/|^™

: \\: //

: : : « //

: : & 1/

'
• A '/

: : : :\\ //

i

x\ jl

w !j^\: 1 t"™#
: v\ u \ : I

: \\ //. « ! : //
: \\ //: \\ : : i

: \\ */ : \\ : //
: \\ / : \\ : : //

j
^

j 1 i w
: \\ : 1/

: : v\ : /r

: : \\: //

: : \\: ir.

'•

'• >\ '/'
: : \i // :

: : j\ il :

1 I 1 L ,

\ \\ if \

: : : \\ ;/ :

: : \\ il :

i
i i

i

20 4-0 60 80 100 120 140 160 180 200

- Actuol NN O/P

Figure B-l. After Offline Training.

0.5
Actuol () ond Desired Model (...) Outputs

-0.2 -

-0.4.

-0.5
400 450 500

Figure B-2. On-line Control With A Single Sinusoid Input.

75

0.4

0.3

0.2

0.1 -

0.1

-0.2 -

-0.3 -

-0.4 -

-0.5

Actual () end Desired Model (...) Outputs

— <• < t •> * ,yK....i .^.....| | ^ —

— i- i » -> k"/" ' \" v ' ""

— <• i i •> ../..<, <
|

.V ; .> _

M^" +" *
\

*>....j/. .-. i
I

V"*i •> —

— <*v i | 'y^"* ?
i i ^V •> —

50 100 150 200 250 300 350

Time Index

4-00 450 500

Figure B-3. On-line Control With Sum of Sinusoids Input.

Actuol () end Desired Model (...) Outputs

0.8 —

0.6 -

0.4.

0.2

-0.2 -

-0.4. -

-0.6

-0.S

-1

— ••• <
j

i > i....*XT\. i J \ y....>V —

50 100 150 200 250 300 350 4-00 450 500

Tim* Index

Figure B-4. On-line Control With High Frequency Sum of Sinusoids Input.

76

0.5

0.4

0.3

0.2

0.1

-0.1

-0.2 -

-0.3 -

-0.4-

-0.5

Actual () and Desired Model (...) Outputs

—I i
\'"f' !

>•"•{• * \'"j'
! \'"r I

~"

- < i t •> * i j i -> —

L. i. i i i, - i i. i. > M

— <••<

'

i
j

> *•• < i i >• —

50 100 150 200 250 300 350 400 450 500

Time Index

Figure B-5. On-line Control With A Square Wave Input.

% %OFFLIN.M% %
% Neural Network Identification and Control of an

% Unknown LTI System.

%
% Offline training for Identifier-Controller.

%
% Written by: Teo, Chin-Hock 15 Sept 91

% %OFFLIN .M% %
% Offline training. Generating Training Data

Nt = 500; Tt=(l:Nt)/Nt; ut=0.2*(sin(2*pi*3*Tt) + sin(2*pi*5*Tt)-cos(2*pi*4*Tt) + l);

yt=zeros(l,Nt);

for indx = 3:Nt

% Simulate the system

yt(indx) = 0.2*yt(indx-l) - 0.9*yt(indx-2) + 3*ut(indx-l);

end;

disp('Choose the observer characteristic polynomial');

% Assuming that the system is 2nd order.

77

Alpha = [1 -0.15 0.005];

dispfGenerate filtered signals uF & yF ... ');

% Using the observer as the filter

%
uft = filter(l, Alpha, ut(:)); yft = filter(l, Alpha, yt(:));

disp('The desired reference model');

% Assume that a first order reference model can be tracked.

%
Dq = [1 -0.8]; ydt = filter(Dq, 1, yt(:));

% Plotting the training data

%
clg; subplot(221);

plot(0

plot(0

plot(0

plot(0

(Nt-l),ut); title('Training Input ut(t)'); xlabel('Time Index'); grid;

(Nt-l),yt); title('Training Output y(t)'); xlabel('Time Index'); grid;

(Nt-l).uft); title(' Filtered Training Input uFt(t)'); xlabel('Time Index'); grid;

(Nt-l).yft); title('Filtered Training Output yFt(t)'); xlabel('Time Index'); grid;

% Create Neural Network

%
First = input('Create a new neural network ? (Y)es (N)o : ', V);

if First == *Y'
|
First == 'y',

% Creating the neural network called IdCtrlr, with Clayer(l) inputs and two hidden layer of

% Clayer(2) neurons and an output layer with Clayer(3) neurons.

%
Clayer = [5, 20, 1]; [IdCtrlr,Wl,W2,dWl,dW2] = net2f(Clayer,2);

else

% Continue training the net.

%
dispfLoading trained net '); load netlin;

end;

% Choose learning parameters

%
Learnl = 0.5; Leam2 = 0.2; Momentl - 0.5; Moment2 = 0.4;

Lpar = [Learnl, Learn2, Momentl, Moment2];

% Set Bias = for no bias. Always set Gain = 1.

%
Bias = 0; Gain = 1; Npar = [Bias, Gain];

% Index to output neuron

%
Oplndx = sum(Clayer);

% Estimator Neural Network Learning

%
disp('Neural Network Training ...'); Lnum = 20

for indx = l:Lnum

% Randomly shuffle the order of presentation of data points.

disp('Shuffling training data ... '); Rindx = shuffle(Nt-2) + 2; indx,

forindxl = l:(Nt-2)

78

IdCtrlr(l) = yft(Rindx(indxl)-l); IdCtrlr(2) - yft(Rindx(indxl)-2);

IdCtrlr(3) = uft(Rindx(indxl)-l); IdCtrlr(4) = uft(Rindx(indxl)-2);

IdCtrlr(5) = ydt(Rindx(indxl)); [IdCtrlr] = recall2f(Clayer,IdCtrlr,Wl,W2,Npar);

DoVec = [ut(Rindx(indxl)-l)J; [Wl,W2,dWl,dW2] =

learn2f(Lpar,DoVec,Clayer,ldCtrlr,Wl ,W2,dWl ,dW2,Npar);

end;

end;

save netlin IdCtrlr Clayer Wl W2 dWl d\V2 Npar Oplndx Alpha Dq

% TSTLIN .M %
% Neural Network Identification and Control of an

% Unknown LTI System.

%
% Testing the offline trained Identifier-Controller.

%
% Written by: Teo, Chin-Hock 15 Sep 91

%%%%%% % % % % % % % % % % % % % % % % % % TSTL IN .M %

% To test the trained net: A input u(t) is fed into the 'unknown'

% system to generate a set of

% output data. The generated data are then used to feed the trained

% neural network to produce u^(t).

%
% Load the trained neural network

%
load netlin

disp('Generating test input ...'); Nv = 200;

u = 0.1 .*(sin(2*pi*(l:Nv)/Nv)+sin(2*pi*(l:Nv).*2/Nv)-sin(2*pi*(l:Nv).*5/Nv));

%u = 0.1 * sign(sin(2*pi*5*(l:Nv)/Nv));

disp('Generating test output ...'); y = zeros(l,Nv);

for indx = 3:Nv,

%
% Simulate the system

y(indx) = 0.2*y(indx-l) - 0.9*y(indx-2) + 3*u(indx-l);

end;

% Filtered signals using the observer as the filter

%
uf = filter(l, Alpha, u(:)); yf = filter(l, Alpha, y(:));

% Desired output

%
yd = filter(Dq, 1, y(:));

% Plot the test data

%
clg; subplot(221);

plot(0:(Nv-l),u); titlefSystem Model 1: Test Input u(t)'); xlabel('Time Index'); grid;

plot(0:(Nv-l),y); title('Test Output y(t)'); xlabel(Time Index'); grid;

plot(0:(Nv-l),uf); title('Filtered Test Input uF(t)'); xlabel('Time Index'); grid;

plot(0:(Nv-l),yf); title('Filtered Test Output yF(t)'); xlabel('Time Index'); grid;

uhat = zeros(l,Nv);

79

% Identifier Recalling

for indx=4:Nv

IdCtrlr(l) = yf(indx-l); IdCtrlr(2) = yf(indx-2);

IdCtrlr(3) = uf(indx-l); IdCtrlr(4) = uf(indx-2);

IdCtrlr(5) = yd(indx);

PdCtrlr] = recall2f(Clayer,IdCtrlr,Wl,W2,Npar); uhat(indx-l) = IdCtrlr(OpIndx);

end;

% Plot the result comparing u(t) to u
A
(t)

clg;subplot(lll); plot(0:(Nv-l),u(l:Nv),0:(Nv-l),uhat(l:Nv),*-
,

);

title('Comparing Actual Input and N-Network Output'); xlabel(' Actual _ NN O/P'); grid;

!del linl.met

meta linl

% ONLIN .M % % % % % % % % % % % % % % % % %%% % % % % % %
% Neural Network Identification and Control of an

% Unknown Nonlinear Dynamical System Type 1

.

%
% Online training for Identifier-Controller.

%
% Written by: Teo, Chin-Hock 11 Oct 91

% ONLIN .M %
% Load the trained net

%
load netlin

%
% Learning parameters for online learning

%
Learn = [0.8 0.8]; Moment = [0.2 0.2]; Lpar = [Learn Moment];

% Leave Npar unchanged

disp('Generating the reference signal ... ');

Ns = 500; Ts = (0:Ns-l)/Ns;

%
% Keep Ref small so the ym is between ± 1

Ref = 0.06*(0.8*sin(pi*Ts)+0.6*cos(pi*3*Ts)-0.6-...

0.5*sin(0.2*pi*14*Ts) + 0.1*sin(2*pi*3.7*Ts));

%Ref = [zeros(l,Ns/5), 0.65*ones(l,4*Ns/5)];

%Ref = 0.1 * sin(2*pi*6*Ts) + 0.1 *sin(2*pi*2.5*Ts);

%Ref = 0.1*sign(sin(2*pi*5*Ts));

%Ref = 0.08*sin(2*pi*14*Ts);

% Reference model output

%
ym = dlsim(l,Dq,Ref);

clg; subplot(211);

plot(0:Ns-l,Ref); title('System Model 1: Reference Signal v(t)'); xlabel(Time Index'); grid;

plot(0:Ns-l,ym); titlef Desired Reference Model Output ym(t)'); xlabel('Time Index'); grid;

% Initial Conditions

%

80

ys = zeros(l,Ns); us = zeros(l,Ns);

ufs = zeros(l,Ns); yfs = zeros(l,Ns);

Onlin = input('(0) No Learning (1) Online Learning : ');

ifOnlin = = 1

disp('Online Control and Learning ... ');

else

disp('Online Control ... ');

end;

for indx=3:Ns-l

% Generate the control signal us

%
IdCtrlr(l) = yfs(indx); IdCtrlr(2) = yfs(indx-l);

IdCtrlr(3) = ufs(indx); IdCtrlr(4) = ufs(indx-l);

IdCtrlr(5) = Ref(indx);

[IdCtrlr] = recall2f(Clayer,IdCtrlr,Wl,W2,Npar); us(indx) = IdCtrlr(OpIndx);

% Update the plant

%
ys(indx + l) = 0.2*ys(indx) - 0.9*ys(indx-l) + 3*us(indx);

% Filter u(indx) and y(indx) with the observer filter

%
ufs(indx+l) = -Alpha(2:3)*[ufs(indx); ufs(indx-l)] + us(indx);

yfs(indx + l) = -Alpha(2:3)*[yfs(indx); yfs(indx-l)] + ys(indx);

yds(indx + l) = Dq*[ys(indx + 1); ys(indx)];

% Identifier on-line learning

%
if Onlin == 1

IdCtrlr(l) = yfs(indx); IdCtrlr(2) = yfs(indx-l);

IdCtrlr(3) = ufs(indx); IdCtrlr(4) = ufs(indx-l);

IdCtrlr(5) = yds(indx-t-l);

[IdCtrlr] = recal!2f(Clayer,IdCtrlr,Wl,W2,Npar); DoVec = us(indx);

[Wl)W2,dWl >dW2] = lcarn2f(Lpar,DoVec,Clayer,IdCtrlr,Wl,W2,dWl,dW2,Npar);

end;

end;

clg; plot(0:Ns-l, ys); grid; xlabel(Time Index');

title('Actual (—) and Desired Model (...) Outputs'); hold; plot(ym,'g:'); hold off

!del lin2.met

meta lin2

pause;

if Onlin == 1,

tstlin; pause;

Ch = input('Do you wish to save the online trained net: (Y) or (N) ? ', 's');

if Ch == 'Y*
|
Ch == 'y\

save netlin IdCtrlr Clayer Wl W2 dWl dW2 Npar Oplndx Alpha Dq
end;

end;

81

APPENDIX C. SIMULATIONS PROGRAMS

% Experiment # 1

% % % % % % % % %%%%%%% % % % % % % % % OFFTRG1F.M %
% Neural Network Identification and Control of an

% Unknown Nonlinear Dynamical System Type 1

.

%
% Offline training for Identifier-Controller.

%
% Written by: Teo, Chin-Hock 11 Oct

%%%% % % % % % % % % % % % % % %%%%% % OFFTRG1F.M % % % % % % % % % % % % % % % %%%%%%% % %
% Keep input, ut(t) between ± 1

%
disp('Generate training input ... '); Nt = 200; rand('uniform');

ul = 0.2*sin(2*pi.*(0:Nt-l).*l/Nt + 0.1*pi.*(rand(l,Nt) - 0.5));

u2 = 0.4*cos(2*pi.*(0:Nt-l).*3/Nt + 0.05*pi.*(rand(l,Nt) - 0.5));

u3 = 0.1*sin(2*pi*(° :Nt-l)-*7/Nt + 0.02*pi.*(rand(l,Nt) - 0.5));

u4 = 1.0*(rand(l,Nt) - 0.5);

ut = 0.5*(ul - u2 + u3 - u4);

%
% The unknown parameters of the nonlinear dynamical system here.

%
al = 0.3; a2 = 0.6; bO = 1; bl = 0.3; b2 = -0.4;

%
% The generating outputs of the unknown nonlinear dynamical

% system here.

%
dispCGenerate training output ... '); yt = zeros(l,Nt);

for indx = 2:Nt,

yt(indx + l) = al*yt(indx) + a2*yt(indx-l) + b0*ut(indx)
A
3 + bl*ut(indx)

A
2 + b2*ut(indx);

end;

disp('Choose the observer characteristic polynomial');

% Assuming that the system is 2nd order.

%
ObsPoles = [0.1; 0.05]; Alpha = conv([l -ObsPoles(l)],[l -ObsPoles(2)])

disp('Generate filtered signals uF & yF ... ');

% Using the observer as the filter

%
uft = filter(l, Alpha, ut(:)); yft = filter(l, Alpha, yt(:));

disp('The desired reference model');

% Assume that a first order reference model can be tracked.

%
Dq = [1 -0.8]; ydt = filter(Dq, 1, yt(:));

% Plotting the training data

%
clg; subplot(221);

plot(0:Nt-l,ut); title('Training Input ut(t)'); xlabel('Time Index'); grid;

82

plot(0

plot(0

plot(0

Nt.yt); title('Training Output y(t)'); xlabel('Time Index'); grid;

Nt-l,uft); title('Filtered Training Input uFt(t)'); xlabcl('Time Index'); grid;

Nt.yft); title('Filtered Training Output yFt(t)'); xlabel('Time Index'); grid;

!del ex 1 If. met

meta exllf

% Create Neural Network

%
First = inputf Create a new neural network ? (Y)es (N)o : ', 's');

if First == 'Y'
|
First == 'y',

% Creating the neural network called IdCtrlr, with Clayer(l) inputs and two hidden layer of

% Clayer(2) neurons and an output layer with Clayer(3) neurons.

%
Clayer = [5, 15, 1]; [IdCtrlr,Wl,W2,dWl,dW2] = net2f(Clayer,2);

else

% Continue training the net.

%
disp('Loading trained net '); load netexlx;

end;

% Choose learning parameters

%
Learnl = 0.5; Learn2 = 0.2; Momentl = 0.5; Moment2 = 0.4;

Lpar = [Learnl, Leam2, Momentl, Moment2];

% Set Bias = for no bias. Always set Gain = 1.

%
Bias = 1; Gain = 1; Npar = [Bias, Gain];

% Index to output neuron

%
Oplndx = sum(Clayer);

% Estimator Neural Network Learning

%
disp('Neural Network Training ...'); Lnum = 50

for indx= l:Lnum

% Randomly shuffle the order of presentation of data points.

disp('Shuffling training data ... '); Rindx = shuffle(Nt-2) + 2; indx,

for indxl = l:(Nt-2)

IdCtrlr(l) = yft(Rindx(indxl)-l); IdCtrlr(2) = yft(Rindx(indxl)-2);

IdCtrlr(3) = uft(Rindx(indxl)-l); IdCtrlr(4) = uft(Rindx(indxl)-2);

IdCtrlr(5) = ydt(Rindx(indxl));

[IdCtrlr] = recaU2f(Clayer,IdCtrlr,Wl,W2,Npar); DoVec = [ut(Rindx(indxl)-l)];

[Wl,W2,dWl,dW2] = learn2f(Lpar,DoVec,Clayer,IdCtrlr,Wl,W2,dWl,dW2,Npar);

end;

end;

save netexlf IdCtrlr Clayer Wl W2 dWl dW2 Npar Oplndx al a2 bO bl b2 Alpha Dq

83

% TSTRG1F.M %
% Neural Network Identification and Control of an

% Unknown Nonlinear Dynamical System Type 1.

%
% Testing the offline trained Identifier-Controller.

%
% Written by: Teo, Chin-Hock 11 Oct 91

% TSTRG1F.M %
% To test the trained net: A input u(t) is fed into the 'unknown' system to generate a set of

% output data. The generated data are then used to feed the trained neural network to produce u*(t).

%
% Load the trained neural network

%
load netexlf

disp('Generating test input ...'); Nv = 200;

u = 0.1 .*(sin(2*pi*(l:Nv)/Nv) + sin(2*pi*(l:Nv).*2/Nv)-sin(2*pi*(l:Nv).*5/Nv));

%u = 0.1 * sign(sin(2*pi*5*(l:Nv)/Nv));

disp(' Generating test output ...'); y = zeros(l,Nv);

for indx= 2:Nv,

% Unknown plant

y(indx + l) = al*y(indx) + a2*y(indx-l) + b0*u(indxr3 + bl*u(indxr2 + b2*u(indx);

end;

% Filtered signals

% Using the observer as the filter

%
uf = filter(l, Alpha, u(:)); yf = filterd, Alpha, y(:));

% Desired output

%
yd = filter(Dq, 1, y(:));

% Plot the test data

%
clg; subplot(221);

plot(0:Nv-l,u); title('System Model 1: Test Input u(t)'); xlabel('Time Index'); grid;

plot(0:Nv,y); title('Test Output y(t)'); xlabel('Time Index'); grid;

plot(0:Nv-l,uf); titlef Filtered Test Input uF(t)'); xlabel(Time Index'); grid;

plot(0:Nv,yf); title('Filtered Test Output yF(t)'); xlabel('Time Index'); grid;

!del exl2f.met

meta exl2f

uhat = zeros(l,Nv);

% Identifier Recalling

for indx = 4:Nv
IdCtrlr(l) = yf(indx-l); IdCtrlx(2) = yf(indx-2);

IdCtrlr(3) = uf(indx-l); IdCtrlr(4) = uf(indx-2);

IdCtrlr(5) = yd(indx);

PdCtrlr] = recall2f(Clayer,IdCtrlr,Wl,W2 >Npar); uhat(indx-l) = IdCtrlr(OpIndx);

end;

% Plot the result comparing u(t) to u
A
(t)

clg;subplot(l 11); plot(0:Nv-l ,u(l :Nv),0:Nv-l ,uhat(l :Nv),'-');

title('System Model 1: Comparing Actual Input and N-Network Output');

84

xlabelC Actual NN 0/P'); grid;

!del exl3f.met

meta exl3f

% %ONTRG 1 F.M% %
% Neural Network Identification and Control of an

% Unknown Nonlinear Dynamical System Type 1

.

%
% Online training for Identifier-Controller.

%
% Written by: Teo, Chin-Hock 11 Oct 91

% %0NTRG1F.M% %
% Load the trained net

%
load netexlf

%
% Learning parameters for online learning

%
Learn = [0.4 0.4]; Moment = [0 0]; Lpar = [Learn Moment];

% Leave Npar unchanged

disp('Generating the reference signal ... ');

Ns = 5000; Ts = (0:Ns-l)/Ns;

%
% Keep Ref small so the ym is between ± 1

%
Ref = 0.06*(0.5*sin(2*pi*Ts)+cos(2*pi*7*Ts)-0.3*sin(2*pi*14*Ts));

%Ref = [zeros(l,Ns/5), 0.1*ones(l,4*Ns/5)];

%Ref = 0.1 * sin(2*pi*3*Ts);

%Ref = 0.1*sign(sin(2*pi*5*Ts));

%Ref = 0.08*sin(2*pi*14*Ts);

% Reference model output

%
ym = dlsim(l,Dq,Ref); clg; subplot(211);

plot(0:Ns-l,Ref); titlefSystem Model 1: Reference Signal v(t)'); xlabel(Time Index'); grid;

plot(0:Ns-l,ym); titlefDesired Reference Model Output ym(t)'); xlabel(Time Index'); grid;

!del exl4f.met

meta exl4f

% Initial Conditions

%
ys = zeros(l,Ns); us = zeros(l,Ns); ufs = zeros(l,Ns); yfs = zeros(l,Ns);

Onlin = input('(0) No Learning (1) Online Learning : ');

if Onlin == 1

disp('Online Control and Learning ... ');

else

disp('Online Control ... ');

end;

for indx=3:Ns-l

% Generate the control signal us

%
IdCtrlr(l) = yfs(indx); IdCtrlr(2) = yfs(indx-l);

IdCtrlr(3) = ufs(indx); IdCtrlr(4) = ufs(indx-l);

85

IdCtrlr(5) = Ref(indx);

[IdCtrlr] = recaltZfCClayer.IdCtrlr.Wl.WZ.Npar); us(indx) = IdCtrlr(OpIndx);

% Update the plant

%
ys(indx + l) = al*ys(indx) + a2*ys(indx-l) + b0*us(indx)~3 + bl*us(indxr2 + b2*us(indx);

% Filter u(indx) and y(indx) with the observer filter

%
ufs(indx + l) = -Alpha(2:3)*[ufs(indx); ufs(indx-l)] + us(indx);

yfs(indx+l) = -Alpha(2:3)*[yfs(indx); yfs(indx-l)] + ys(indx);

yds(indx + l) = Dq*[ys(indx+ 1); ys(indx)];

% Identifier on-line learning

%
if Onlin == 1

IdCtrlr(l) = yfs(indx); IdCtrlr(2) = yfs(indx-l);

IdCtrlr(3) = ufs(indx); IdCtrlr(4) = ufs(indx-l);

IdCtrlr(5) = yds(indx+l);

[IdCtrlr] = recall2f(Clayer,IdCtrlr,Wl,W2,Npar); DoVec = us(indx);

[Wl ,W2,dWl ,dW2] = learn2f(Lpar,DoVec,Clayer,IdCtrlr,Wl ,W2,dWl ,d\V2,Npar);

end;

end;

clg; plot(0:Ns-l, ys); grid; xlabel('Time Index');

title('System Model 1: Actual
() and Desired Model (—) Outputs'); hold; plot(ym,'g— '); hold off

!del exl5f.met

meta exl5f

pause;

if Onlin == 1,

tstrglf; pause;

Ch = input('Do you wish to save the online trained net: (Y) or (N) ? ', 's');

if Ch == 'Y' j Ch == 'y',

save netexlf IdCtrlr Clayer Wl W2 dWl dW2 Npar Oplndx al a2 bO bl b2 Alpha Dq
end;

end;

% Experiment # 2

% OFFTRG2F.M %
% Keep input, ut(t) between ± 1

disp('Generate training input ... '); Nt = 200; rand('uniform');

ul = 0.2*sin(2*pi.*(0:Nt-l).*l/Nt + 0.1*pi.*(rand(l,Nt) - 0.5));

u2 = 0.4*cos(2*pi.*(0:Nt-l).*3/Nt + 0.05*pi.*(rand(l,Nt) - 0.5));

u3 = 0.1*sin(2*pi.*(0:Nt-l).*7/Nt + 0.02*pi.*(rand(l,Nt) - 0.5));

u4 = 1.0*(rand(l,Nt)-0.5);

ut = 0.2*(ul - u2 + u3 - u4);

% The generating outputs of the unknown nonlinear dynamical

% system here.

dispfGenerate training output ... '); yt = zeros(l,Nt);

for indx=2:Nt,

yt(indx + l) = (yt(indx)*yt(indx-l)*(yt(indx) + 2.5))/(l +yt(indxr2 + yt(indx-l)"2) + ut(indx);

86

end;

disp('Choose the observer characteristic polynomial');

% Assuming that the system is 2nd order.

%
ObsPoles = [0.1; 0.05]; Alpha = conv([l -ObsPoles(l)],[l -ObsPoles(2)])

disp('Generate filtered signals uF & yF ... ');

% Using the observer as the filter

%
uft = filter(l, Alpha, ut(:)); yft = filter(l, Alpha, yt(:));

disp('The desired reference model');

% Assume that a first order reference model can be tracked.

%
Dq = [1 -0.8]; ydt = filter(Dq, 1, yt(:));

% Plotting the training data

%
clg; subplot(221);

plot(0

plot(0

plot(0

plot(0

Nt-l,ut); title('System Model 2: Training Input ut(t)'); xlabel('Time Index'); grid;

Nt,yt); title('Training Output y(t)'); xlabeK'Time Index'); grid;

Nt-l,uft); title('Filtered Training Input uFt(t)'); xlabeK'Time Index'); grid;

Nt.yft); title('Filtered Training Output yFt(t)'); xlabel('Time Index'); grid;

!del ex21f.met

meta ex21f

% Create Neural Network

%
First = input('Create a new neural network ? (Y)es (N)o : ', 's');

if First == 'V |
First == 'y',

% Creating the neural network called IdCtrlr, with Clayer(l) inputs and one hidden layer

% of Clayer(2) neurons and an output layer with Clayer(3) neurons.

%
Clayer = [5, 15, 1]; [IdCtrlr,Wl,W2,dWl,dW2] = net2f(Clayer,l);

else

disp('Loading trained net '); load netex2f;

end;

% Choose learning parameters

%
Learn = [0.6 0.4]; Moment = [0.4 0.4]; Lpar = [Learn Moment];

% Set Bias = for no bias. Set Gain = 1.

%
Bias = 1; Gain = 1; Npar = [Bias, Gain];

% Index to output neuron

%
Oplndx = sum(Clayer);

% Estimator Neural Network Learning

%
disp('Neural Network Training ...'); Lnum = 50

for indx = l:Lnum

87

% Randomly shuffle the order of presentation of data points.

disp('Shuffling training data ... '); Rindx = shuffle(Nt-2) + 2; indx,

forindxl = l:(Nt-2)

IdCtrlr(l) = yft(Rindx(indxl)-l); IdCtrlr(2) = yft(Rindx(indxl)-2);

IdCtrlr(3) = uft(Rindx(indxl)-l); IdCtrlr(4) = uft(Rindx(indxl)-2);

IdCtrlr(5) = ydt(Rindx(indxl));

[IdCtrlr] = recall2f(Clayer >IdCtrlr,Wl,W2,Npar); DoVec = [ut(Rindx(indxl)-l)];

[Wl,W2,dWl,dW2] = learn2f(Lpar,DoVec,Clayer,IdCtrlr,Wl,W2,dWl)dW2)
Npar);

end;

end;

save netex2f IdCtrlr Clayer Wl W2 dWl dW2 Npar Oplndx Alpha Dq

% % % % % % % %%%%%%%%% % % % % % % % TSTRG2F.M %
% To test the trained net: A input u(t) is fed into the 'unknown' system to generate a set of

% output data. The generated data are then used to feed the trained neural network to produce u
A

(t).

%
% Load the trained neural network

%
load netex2f

%
% Keep input, ut(t) between ± 1

%
disp('Generating test input ...'); Nv = 200;

u = 0.1 .*(sin(2*pi*(l:Nv)/Nv) + sin(2*pi*(l:Nv).*2/Nv)-sin(2*pi*(l:Nv).*5/Nv));

%u = 0.1 * sign(sin(2*pi*5*(l:Nv)/Nv));

disp('Generating test output ...'); y=zeros(l,Nv);

for indx=2:Nv,

% Unknown plant

%
y(indx+l) = (y(indx)*y(indx-l)*(y(indx) + 2.5))/(l +y(indxr2 + y(indx-ir2) + u(indx);

end;

% Filtered signals

% Using the observer as the filter

%
uf = filterU, Alpha, u(:)); yf = filter(l. Alpha, y(:));

% Desired output

yd = filter(Dq, 1, y(:));

% Plot the test data

%
clg; subplot(221);

plot(0:Nv-l,u); title('System Model 2: Test Input u(t)'); xlabel('Time Index'); grid;

plot(0:Nv,y); title('Test Output y(t)'); xlabel('Time Index'); grid;

plot(0:Nv-l,uf); title('Filtered Test Input uF(t)'); xlabel('Time Index'); grid;

plot(0:Nv,yf); title('Filtered Test Output yF(t)'); xlabelfTime Index'); grid;

!del ex22f.met

meta ex22f

uhat=zeros(l,Nv);

% Identifier Recalling

for indx=4:Nv

IdCtrlr(l) = yf(indx-l); IdCtrlr(2) = yf(indx-2);

88

IdCtrlr(3) = uf(indx-l); IdCtrlr(4) = uf(indx-2);

IdCtrlr(5) = yd(indx);

[IdCtrlr] = recall2f(Clayer,IdCtrlr,Wl,W2,Npar); uhat(indx-l) = IdCtrlr(OpIndx);

end;

clg;subplot(lll); plot(0:Nv-l,u(l:Nv),0:Nv-l,uhat(l:Nv),'--');

titlc('System Model 2: Comparing Actual Input and N-Network Output');

xlabelf Actual NN O/P'); grid;

!del ex23f.met

meta ex23f

% %ONTRG2F.M% %
% Load the trained net

%
load netex2f

%
% Learning parameters for online learning

%
Learn = [0.3 0.3]; Moment = [0 0]; Lpar = [Learn Moment];

% Leave Npar unchanged

disp('Generating the reference signal ... ');

Ns = 5000; Ts = (0:Ns-l)/Ns;

%
% Keep Ref small so the ym is between ± 1

%
Ref = 0.02*(0.5*sin(2*pi*Ts) + cos(2*pi*7*Ts)-l)+0.3*sin(2*pi*17*Ts));

%Ref = [zeros(l,Ns/5), 0.1*ones(l,4*Ns/5)];

%Ref = 0.1 * sin(2*pi*3*Ts);

%Ref = 0.1*sign(sin(2*pi*5*Ts));

%Ref = zeros(l,Ns); %Ref(l:10) = 0.5*ones(l,10);

%Ref = 0.5*ones(l,Ns);

% Reference model output

ym = dlsim(l,Dq,Ref); clg; subplot(211);

plot(0:Ns-l,Re0; title('Model System 2: Reference Signal v(t)'); xlabel('Time Index'); grid;

plot(0:Ns-l,ym); title('Desired Reference Model Output ym(t)'); xlabel('Time Index'); grid;

!del del ex24f.met

meta ex24f

% Initial Conditions

ys=zeros(l,Ns); us=zeros(l,Ns); ufs=zeros(l,Ns); yfs=zeros(l,Ns);

Onlin = input('(0) No Learning (1) Online Learning : ');

if Onlin == 1

disp('Online Control and Learning ... ');

else

disp('Online Control ... ');

end;

for indx = 3:Ns-l

% Generate the control signal us

%
IdCtrlr(l) = yfs(indx); IdCtrlr(2) = yfs(indx-l);

IdCtrlr(3) = ufs(indx); IdCtrlr(4) = ufs(indx-l);

IdCtrlr(5) = Ref(indx);

89

PdCtrlr] = recaU2f(Clayer,IdCtrlr,Wl,W2,Npar); us(indx) = IdCtrlr(OpIndx);

% Update the plant

%
ys(indx+l) = (ys(indx)*ys(indx-l)*(ys(indx) + 2.5))/(l+ys(indxr2+ys(indx-l)*2)+us(indx);

% Filter u(indx) and y(indx) with the observer filter

%
ufs(indx+ l) = -Alpha(2:3)*[ufs(indx); ufs(indx-l)] + us(indx);

yfs(indx + l) = -Alpha(2:3)*[yfs(indx); yfs(indx-l)] + ys(indx);

yds(indx+ l) = Dq*[ys(indx+1); ys(indx)];

% Identifier on-line learning

%
if Onlin == 1

IdCtrlr(l) = yfs(indx); IdCtrlr(2) = yfs(indx-l);

IdCtrlr(3) = ufs(indx); IdCtrlr(4) = ufs(indx-l);

IdCtrlr(5) = yds(indx + l);

[IdCtrlr] = recall2f(Clayer,IdCtrlr,Wl,W2,Npar); DoVec = us(indx);

[Wl,W2,dWl,dW2] = learn2f(Lpar,DoVec,Clayer,IdCtrlr,Wl
>
W2

)
dWl,dW2

)
Npar);

end;

end;

clg; plot(0:Ns-l, ys); grid; xlabel('Time Index');

title('System Model 2: Actual
() and Desired Model (...) Outputs'); hold; plot(ym,':'); hold off

!del ex25f.met

meta ex25f

if Onlin == 1,

tstrg2f; pause;

Ch = input('Do you wish to save the online trained net: (Y) or (N) ? ', V);

if Ch = = 'Y'
I

Ch == y,
save netex2f IdCtrlr Clayer Wl W2 dWl d\V2 Npar Oplndx Alpha Dq

end;

end;

% Experiment U 3

% % % %%%%% % % % % % % % % % % % % % % % %OFFTRG3M%% %
% Keep input, ut(t) between + 1

%
disp('Generate training input ... '); Nt = 200; rand('uniform');

ul = 0.2*sin(2*pi.*(0:Nt-l).*l/Nt + 0.1*pi.*(rand(l,Nt) - 0.5));

u2 = 0.4*cos(2*pi.*(0:Nt-l).*3/Nt + 0.05*pi.*(rand(l,Nt) - 0.5));

u3 = 0.1*sin(2*pi.*(0:Nt-l).*7/Nt + 0.02*pi.*(rand(l,Nt) - 0.5));

u4 = 1.0*(rand(l,Nt) - 0.5);

ut = 0.2*(ul - u2 + u3 - u4);

%
% The generating outputs of the unknown nonlinear dynamical

% system here.

%
disp('Generate training output ... '); yt=zeros(l,Nt);

for indx=2:Nt,

90

yt(indx + l) = yt(indx)/(l + yt(indx-lT2) + ut(indxr3;

end;

disp('Choose the observer characteristic polynomial');

% Assuming that the system is 2nd order.

%
ObsPoles = [0.03; 0.2]; Alpha = convtfl -ObsPoles(l)],[l -ObsPoles(2)])

disp('Generate fdtered signals uF & yF ... ');

% Using the observer as the filter

%
uft = filter(l, Alpha, ut(:)); yft = filter(l, Alpha, yt(:));

disp('The desired reference model');

% Assume a zero order reference model can be tracked

%
Dq = [1 -0.6]; ydt = filter(Dq, 1, yt(:));

% Plotting the training data

%
clg; subplot(221);

plot(0:Nt-l,ut); title('Model System 3: Training Input ut(t)'); xlabel(Time Index'); grid;

plot(0:Nt,yt); titlefTraining Output y(t)'); xlabelfTime Index'); grid;

plot(0:Nt-l,uft); title('Filtered Training Input uFt(t)'); xlabel('Time Index'); grid;

plot(0:Nt,yft); title('Filtered Training Output yFt(t)'); xlabel('Time Index'); grid;

!del ex31.met

meta ex31

% Create the Neural Network

%
First = input('Create a new neural network ? (Y)es (N)o :

', V);

if First == 'Y'
|
First == 'y',

% Creating the neural network called IdCtrlr, with Clayer(l) inputs and one hidden layer of

% Clayer(2) neurons and an output layer with Clayer(3) neurons.

%
R = 1; Clayer = [5, 15, 1]; [IdCtrlr,Wl,W2,dWl,dW2] = net2f(Clayer,R);

else

% Continue training the net.

%
disp('Loading trained net '); load netex3;

end;

% Choose learning parameters

%
Learnl = 0.5; Learn2 = 0.7; Momentl = 0.4; Moment2 = 0.4; Lpar = [Learn 1, Learn2, Momentl, Moment2];

% Set Bias = for no bias. Always set Gain = 1.

%
Bias = 1; Gain = 1; Npar = [Bias, Gain];

% Index to output neuron

%
Oplndx = sum(Clayer);

% Estimator Neural Network Learning

91

disp('Neural Network Training ...'); Lnum = 50

for indx = l:Lnum

% Randomly shuffle the order of presentation of data points.

disp('Shuffling training data ... '); Rindx = shuffle(Nt-2) + 2; indx,

forindxl = l:(Nt-2)

IdCtrlr(l) = yft(Rindx(indxl)-l); IdCtrlr(2) = yft(Rindx(indxl)-2);

IdCtrlr(3) = uft(Rindx(indxl)-l); IdCtrlr(4) = uft(Rindx(indxl)-2);

IdCtrlr(5) = ydt(Rindx(indxl));

[IdCtrlr] = recall2f(Clayer,IdCtrlr,Wl,W2,Npar); DoVec = [ut(Rindx(indxl)-l)];

[Wl,W2,dWl,dW2] = leam2f(Lpar,DoVec,Clayer,IdCtrir,Wl,W2,dWl,dW2,Npar);

end;

end;

save netex3f IdCtrlr Clayer Wl W2 dWl d\V2 Npar Oplndx Alpha Dq

% %TSTRG3 .M% %
% To test the trained net: A input u(t) is fed into the 'unknown' system to generate a set of

% output data. The generated data are then used to feed the trained neural network to produce u*(t).

%
% Load the trained neural network

%
load netex3f

disp('Generating test input ...'); Nv = 200;

u = 0.1 .*(sin(2*pi*(l:Nv)/Nv) + sin(2*pi*(l:Nv).*2/Nv)-sin(2*pi*(l:Nv).*5/Nv));

%U = 0.1 * sign(sin(2*pi*5*(l:Nv)/Nv));

disp('Generating test output ...'); y = zeros(l,Nv);

for indx = 2:Nv,

% Unknown plant

%
y(indx + l) = y(indx)/(l + y(indx-lT2) + u(indx)"3;

end;

% Filtered signals

% Using the observer as the filter

%
uf = filter(l, Alpha, u(:)); yf = filter(l. Alpha, y(:));

% Desired output

%
yd = filter(Dq, 1, y(:));

% Plot the test data

%
clg; subplot(221);

plot(0:Nv-l,u); title('Model System 3: Test Input u(t)'); xlabel('Time Index'); grid;

plot(0:Nv,y); titlefTest Output y(t)'); xlabelfTime Index'); grid;

plot(0:Nv-l,uf); titlefFiltered Test Input uF(t)'); xlabel('Time Index'); grid;

plot(0:Nv,yf); title('Filtered Test Output yF(t)'); xlabel('Time Index'); grid;

!del ex32f.met

meta ex32f

uhat = zeros(l,Nv);

% Identifier Recalling

for indx=4:Nv

92

IdCtrlr(l) = yf(indx-l); IdCtrlr(2) = yf(indx-2);

IdCtrlr(3) = uf(indx-l); IdCtrlr(4) = uf(indx-2);

IdCtrlr(5) = yd(indx);

[IdCtrlr] = recalEtfCIayer.IdCtrlr.Wl.W^.Npar); uhat(indx-l) = IdCtrlr(OpIndx);

end;

% Plot the result comparing u(t) to u*(t)

clgisubplotClllJjplotCOiNv-l.uCliNvJ.O^v-l.uhaUliNv),'-');

title('Model System 3: Comparing Actual Input and N-Network Output');

xlabelC Actual NN O/P'); grid;

!del ex33f.met

meta ex33f

%%%%%%%%%%%%%%%%%%%%%%% %ONTRG3F.M%%%%%%%%%%%%%%%%%%%%%%%%
% Load the trained net

%
load netex3f

%
% Learning parameters for online learning

%
Learnl = 0.2; Leam2 = 0.2; Momentl = 0; Moment2 = 0; Lpar = [Learnl, Learn2, Momentl, Moment2];

% Leave Npar unchanged

disp(' Generating the reference signal ... ');

Ns = 5000;Ts = (0:Ns-l)/Ns;

Ref = 0.2*(0.5*sin(2*pi*Ts) + cos(2*pi*3*Ts))-0.3*sin(2*pi*ll*Ts));

%Ref = [zeros(l,Ns/5), 0.1*ones(l,4*Ns/5)];

%Ref = 0.1 * sin(2*pi*3*Ts);

%Ref = 0.1*sign(sin(2*pi*5*Ts));

%Ref = zeros(l.Ns); %Ref(l:10) = 0.5*ones(l,10);

%Ref = 0.5*ones(l,Ns);

% Reference model output

%
ym = dlsim(l,Dq,Ref); clg; subplot(211);

plot(0:Ns-l,Ref); title('Model System 3: Reference Signal v(t)'); xlabel('Time Index'); grid;

plot(0:Ns-l,ym); title('Desired Reference Model Output ym(t)'); xlabel('Time Index'); grid;

!del ex34.met

meta ex34

% Initial Conditions

%
ys = zeros(l,Ns); us = zeros(l,Ns); ufs=zeros(l,Ns); yfs = zeros(l,Ns);

Onlin = input('(0) No Learning (1) Online Learning : ');

if Onlin == 1

disp('Online Control and Learning ... ');

else

disp('Online Control ... ');

end;

for indx=3:Ns-l

% Generate the control signal us

%
IdCtrlr(l) = yfs(indx); IdCtrlr(2) = yfs(indx-l);

IdCtrlr(3) = ufs(indx); IdCtrlr(4) = ufs(indx-l);

93

IdCtrlr(5) = Ref(indx);

[IdCtrlr] = recall2f(Claycr,IdCtrlr,Wl,W2,Npar); us(indx) = IdCtrlr(OpIndx);

% Update the plant

%
ys(indx+l) = ys(indx)/(l + ys(indx-ir2) + us(indx)

A
3;

% Filter u(indx) and y(indx) with the observer filter

%
ufs(indx + l) = -Alpha(2:3)*[ufs(indx); ufs(indx-l)] + us(indx);

yfs(indx + l) = -Alpha(2:3)*[yfs(indx); yfs(indx-l)] + ys(indx);

yds(indx + l) = Dq*[ys(indx + 1); ys(indx)];

% Identifier on-line learning

%
if Onlin == 1

IdCtrlr(l) = yfs(indx); IdCtrlr(2) = yfs(indx-l);

IdCtrlr(3) = ufs(indx); IdCtrlr(4) = ufs(indx-l);

IdCtrlr(5) = yds(indx+l);

[IdCtrlr] = recall2f(Clayer,IdCtrlr,Wl,W2,Npar); DoVec = us(indx);

[Wl ,W2,dWl ,dW2] = leam2f(Lpar,DoVec,Clayer,IdCtrlr,Wl ,W2,dWl ,dW2,Npar);

end;

end;

clg; plot(0:Ns-l, ys); grid; xlabel('Time Index');

title('System Model 3: Actual
() and Desired Model (—) Outputs'); hold; plot(ym,'g-'); hold off

!del ex35f.met

meta ex35f

if Onlin ==1,
tstrg3f; pause;

Ch = input('Do you wish to save the online trained net: (Y) or (N) ? ', 's');

if Ch == 'Y'
|
Ch == 'y',

save netex3f IdCtrlr Clayer Wl W2 dWl dW2 Npar Oplndx Alpha Dq
end;

end;

% Experiment U 4

% OFFTRG4F.M %
% Keep input, ut(t) between ± 1

%
disp('Generate training input ... '); Nt = 200; rand('uniform');

ul = 0.2*sin(2*pi.*(0:Nt-l).*l/Nt + 0.1*pi.*(rand(l,Nt) - 0.5));

u2 = 0.4*cos(2*pi-*(0:Nt-l).*3/Nt + 0.05*pi.*(rand(l,Nt) - 0.5));

u3 = 0.1*sin(2*pi.*(0:Nt-l).*7/Nt + 0.02*pi.*(rand(l,Nt) - 0.5));

u4 = 1.0*(rand(l,Nt)-0.5);

ut = 0.2*(ul - u2 + u3 - u4);

% The generating outputs of the unknown nonlinear dynamical system here.

%
disp('Generate training output ... '); yt = zeros(l,Nt);

for indx = 3:Nt,

94

yt(indx + l) = (yt(indx)*yt(indx-l)*yt(indx-2)*ut(indx-l)*(yt(indx-2)-l) + ...

ut(indx))/(1 + yt(indx- 1)

A
2 + yt(indx-2)"2)

;

end;

disp('Choose the observer characteristic polynomial');

% Assuming that the system is 2nd order.

%
ObsPoles = [0.03; 0.05; 0]; Alpha = conv(conv([l -ObsPoles(l)],[l -ObsPoles(2)]),[l -ObsPoles(3)])

disp('Generate fdtered signals uF & yF ... ');

% Using the observer as the fdter

%
uft = filter(l, Alpha, ut(:)); yft = fdter(l, Alpha, yt(:));

disp('The desired reference model');

% Assume that a first order reference model can be tracked.

%
Dq = [1 -0.75]; ydt = filter(Dq, 1, yt(:));

% Plotting the training data

%
clg; subplot(221);

plot(0

plot(0

plot(0

plot(0

Nt-l,ut); title('System Model 4: Training Input ut(t)'); xJabel('Time Index'); grid;

Nt.yt); title('Training Output y(t)'); xlabel('Time Index'); grid;

Nt-l,uft); title('Fdtered Training Input uFt(t)'); xJabel('Time Index'); grid;

Nt.yft); title('Fdtered Training Output yFt(t)'); xlabel('Time Index'); grid;

!del ex41f.met

meta ex41f

% Create Neural Network

%
First = input('Create a new neural network ? (Y)es (N)o :

', 's');

if First == *Y'
|
First == 'y',

% Creating the neural network called IdCtrlr, with Clayer(l) inputs and one hidden layer of

% Clayer(2) neurons and an output layer with Clayer(3) neurons.

%
Clayer = [7, 21, 1]; [IdCtrlr,Wl,W2,dWl,dW2] = net2f(Clayer,l);

else

% Continue training the net.

%
disp('Loading trained net '); load netex4;

end;

% Choose learning parameters

%
Learn = [0.6 0.6]; Moment = [0.4 0.4]; Lpar = [Leam Moment];

% Set Bias = for no bias. Always set Gain = 1.

%
Bias = 1; Gain = 1; Npar = [Bias, Gain];

% Index to output neuron

%
Oplndx = sum(Clayer);

95

% Estimator Neural Network Learning

%
disp('Neural Network Training ...'); Lnum = 50

for indx=l:Lnum

% Randomly shuffle the order of presentation of data points.

dispCShuffling training data ... '); Rindx = shuffle(Nt-3) + 3; indx,

for indxl = l:(Nt-3)

IdCtrlr(l) = yft(Rindx(indxl)-l); IdCtrlr(2) = yft(Rindx(indxl)-2);

IdCtrlr(3) = yft(Rindx(indxl)-3);

IdCtrlr(4) = uft(Rindx(indxl)-l); IdCtrlr(5) = uft(Rindx(indxl)-2);

IdCtrlr(6) = uft(Rindx(indxl)-3);

IdCtrlr(7) = ydt(Rindx(indxl));

[IdCtrlr] = recall2f(Clayer,IdCtrlr,Wl,W2,Npar); DoVec = [ut(Rindx(indxl)-l)];

[Wl,W2,dWl,dW2] = learn2f(Lpar,DoVec
)Clayer,IdCtrlr,Wl,W2,dWl,dW2,Npar);

end;

end;

save netex4f IdCtrlr Clayer Wl W2 dWl dW2 Npar Oplndx Alpha Dq

% TSTRG4F.M %
% To test the trained net: A input u(t) is fed into the 'unknown' system to generate a set of

% output data. The generated data are then used to feed the trained neural network to produce u"\t).

%
% Load the trained neural network

%
load netex4f

disp(' Generating test input ...'); Nv = 200;

u = 0.1 .*(sin(2*pi*(l:Nv)/Nv) + sin(2*pi*(l:Nv).*2/Nv)-sin(2*pi*(l:Nv).*5/Nv));

%u = 0.1 * sign(sin(2*pi*5*(l:Nv)/Nv));

disp('Generating test output ...'); y = zeros(l,Nv);

for indx = 3:Nv,

% Unknown plant

%
y(indx + l) = (y(indx)*y(indx-l)*y(indx-2)*u(indx-l)*(y(indx-2)-l) + u(indx))/...

(1 +y(indx-l)*2+y(indx-2)*2);

end;

% Filtered signals using the observer as the filter

%
uf = filter(l, Alpha, u(:)); yf = filter(l, Alpha, y(:));

% Desired output

%
yd = filter(Dq, 1, y(:));

% Plotting the test data

%
clg; subplot(221);

plot(0:Nv-l,u); titlefSystem Model 4: Test Input u(t)'); xlabel('Time Index'); grid;

plot(0:Nv,y); title('Test Output y(t)'); xlabelfTime Index'); grid;

plot(0:Nv-l,uf); title('Filtered Test Input uF(t)'); xlabel('Time Index'); grid;

plot(0:Nv,yf); title(*Filtered Test Output yF(t)'); xlabelfTime Index'); grid;

!del ex42f.met

meta ex42f

96

uhat = zeros(l,Nv);

% Identifier Recalling

for indx = 4:Nv
IdCtrlr(l) = yf(indx-l); IdCtrlr(2) = yf(indx-2);

IdCtrlr(3) = uf(indx-l); IdCtrlr(4) = uf(indx-2);

IdCtrlr(5) = yd(indx);

[IdCtrlr] = recall2f(Clayer,IdCtrlr)
Wl,W2,Npar); uhat(indx-l) = IdCtrlr(OpIndx);

end;

% Plot the result comparing u(t) to u
A
(t)

clg;subplot(lll);plot(0:Nv-l,u(l:Nv))
0:Nv-l

(
uhat(l:Nv)

>

•- ,

);

title('System Model 4: Comparing Actual Input and N-Network Output');

xlabel(' Actual NN O/P'); grid;

!del ex43f.met

meta ex43f

% %ONTRG4F.M% %
% Load the trained net

%
load netex4f

%
% Learning parameters for online learning

%
Learn = [0.4 0.2]; Moment = [0 0]; Lpar = [Learn Moment];

% Leave Npar unchanged

disp('Generating the reference signal ... '); Ns = 3000; Ts = (0:Ns-l)/Ns;

%
% Keep Ref small so the ym is between + 1

%
Ref = 0.02*(0.5*sin(2*pi*Ts) + cos(2*pi*3*Ts)-l - 0.3*sin(2*pi*ll*Ts));

%Ref = [zeros(l,Ns/5), 0.1*ones(l,4*Ns/5)];

%Ref = 0.1 * sin(2*pi*3*Ts);

%Ref = 0.1*sign(sin(2*pi*5*Ts));

%Ref = zeros(l,Ns); %Ref(l:10) = 0.5*ones(l,10);

%Ref = 0.5*ones(l,Ns);

% Reference model output

%
ym = dlsim(l,Dq,Ref); clg; subplot(211);

plot(0:Ns-l,Ref); title('Reference Signal v(t)'); xlabel('Time Index'); grid;

plot(0:Ns-l,ym); title('Desired Reference. Model Output ym(t)'); xlabel('Time Index'); grid;

!del ex44f.met

meta ex44f

% Initial Conditions

ys=zeros(l,Ns); us = zeros(l,Ns); ufs = zeros(l,Ns); yfs = zeros(l,Ns);

Onhn = input('(0) No Learning (1) Online Learning : ');

ifOnlin == 1

disp('Online Control and Learning ... ');

else

disp('Online Control ... ');

end;

for indx=3:Ns-l

97

% Generate the control signal us

%
IdCtrlr(l) = yfs(indx); IdCtrlr(2) = yfs(indx-l);

IdCtrlr(3) = ufs(indx); IdCtrlr(4) = ufs(indx-l);

IdCtrlr(5) = Ref(indx);

pdCtrlr] = recall2f(Clayer,IdCtrlr,Wl,W2,Npar); us(indx) = IdCtrlr(OpIndx);

% Update the plant

%
ys(indx + l) = (ys(indx)*ys(indx-l)*ys(indx-2)*us(indx-l)* ...

(ys(indx-2)-l)+ us(indx))/(l + ys(indx-ir2 + ys(indx-2r2);

% Filter u(indx) and y(indx) with the observer filter

%
ufs(indx + l) = -Alpha(2:3)*[ufs(indx); ufs(indx-l)] + us(indx);

yfs(indx+ l) = -Alpha(2:3)*[yfs(indx); yfs(indx-l)] + ys(indx);

yds(indx + l) = Dq*[ys(indx+1); ys(indx)];

% Identifier on-line learning

%
ifOnlin == 1

IdCtrlr(l) = yfs(indx); IdCtrlr(2) = yfs(indx-l);

IdCtrlr(3) = ufs(indx); IdCtrlr(4) = ufs(indx-l);

IdCtrlr(5) = yds(indx + l);

PdCtrlr] = recaU2f(Clayer,IdCtrlr)
Wl,W2,Npar); DoVec = us(indx);

[Wl >
W2,dWl ,dW2] = learn2f(Lpar,DoVec,Clayer,IdCtrlr,Wl ,W2,dWl ,dW2,Npar);

end;

end;

clg; plot(0:Ns-l, ys); grid; xlabel('Time Index');

title('System Model 4: Actual () and Desired Model (—) Outputs'); hold; plot(ym,'g--'); hold off

!del ex45f.met

meta ex45f

pause;

ifOnlin == 1,

tstrg4f; pause;

Ch = input('Do you wish to save the online trained net: (Y) or (N) ? ', Y);

if Ch == 'Y'
|
Ch == y,

save netex4f IdCtrlr Clayer Wl W2 dWl dW2 Npar Oplndx Alpha Dq
end;

end;

98

APPENDIX D. BNN SOFTWARE SIMULATOR

function [Neurons,Wl,W2,dWl,dW2] = net2f(Layer,R);

% function [Neurons,Wl,W2,dWl,dW2] = net2f(Layer,R);

% This function generates the global data structure for a two-layer (excluding input connections) back-

% propagating neural network.

%
% The number of inputs, neurons in the hidden layer and output layer are specified by the vector Layer

% in Layer(l), Layer(2) and Layer(3) respectively.

%
% Returns

% Neurons:

% Array for storing the network inputs and the outputs of all neurons.

% Wl: Weights of input connections to neurons in hidden layer 1.

% W2: Weights of input connections to neurons in output layer.

% Weight elements are random numbers between -Range to Range (default 0.1). Wl and W2 include

% one weight element for a biased input of 1 for each neuron.

% dWl,dW2:
% Working arrays to store the previous weight changes for Wl and W2 elements respectively

% (used in the momentum term in the learning law).

%
% Teo Chin Hock. NPS.

% Date: 9 Oct 91.

% Version: 1.02

NInput= Layer(l); Nhl=Layer(2); NOutput = Layer(3);

% Total number of neurons;

NTotal = NInput + Nhl + NOutput;

%
% Inputs/neuron outputs are assigned to the layer in the

% following order:

% Neuron/Input #

% Input Connections j 1 NInput

% Hidden Layer Neurons
|
(NInput + l)....(NInput+Nhl)

% Output Layer Neurons
j

(NInput + Nhl + 1)... .(NTotal)

%
% Zero all inputs/neuron outputs

Neurons = zeros(NTotal, 1);

%
% Initialise the weights to random numbers within Range

Range = 0.1; rand('uniform');

Wl = 2*Range*rand(Nhl, NInput +1) - Range; W2 = 2*Range*rand(NOutput, Nhl + 1) - Range;

[M,N] = size(Wl);

if M - 1,

W1(M,N) = 0;

else

Tmp = (0:M-1) + 0.5 - M/2; W1(:,N) = (2*R/M)*Tmp(:);

end;

[M,N] = size(W2);

ifM == 1,

W2(M,N) = R;

99

else

Tmp = (0:M-1) + 0.5 - M/2; W2(:,N) = (2*R/M)*Tmp(:);

end;

dWl = zeros(Nhl, NInput+1); dW2 = zeros(NOutput, Nhl + 1);

%
disp(sprintf('*** 2-Layer Back-Propagating Neural Network Created ***\n'))

disp(sprintf('NInput - Number of Input: %g', NInput))

disp(sprintf('Nhl - Number of Neurons in Hidden Layer #1: %g', Nhl))

disp(sprintf('NOutput - Number of Output Neurons: %g', NOutput))

disp(sprintf('Wgts - Connection Weights for Inputs to all Neurons are: '

))

Wl = Wl
W2 = W2
return;

function tNeurons,Wl,W2,W3,dWl,dW2,dW3] = net3f(Layer,R);

% function [Neurons,Wl,W2,W3,dWl,dW2,dW3] - net3f(Layer,R);

% This function generates the global data structure for a 3-layer (excluding input connections)

% back-propagating neural network. Bias weightings are set and evenly spaced between -R:R.

%
% Use this to create the backpropagating neural network to be used with recall3f.m and learn3f.m.

%
% The number of inputs, neurons in the hidden layers and output layer are specified by the vector

% Layer in Layer(l), Layer(2), Layer(3) and Layer(4) respectively.

%
% Returns

% Neurons:

% Array for storing the network inputs and the outputs of all neurons.

% Wl: Weights of input connections to neurons in hidden layer 1.

% W2: Weights of input connections to neurons in hidden layer 3.

% W3: Weights of input connections to neurons in output layer.

% Weight elements are random numbers between -Range to Range (default 0.1). Wl, W2 and W3 include

% one weight element for a biased input of 1 for each neuron.

% dWl,dW2, dW3:

% Working arrays to store the previous weight changes for Wl , W2 and W3 elements respectively

% (used in the momentum term in the learning law).

%
% Teo Chin Hock. NPS.

% Date: 9 Oct 91.

NInput = Layer(l); Nhl =Layer(2); Nh2 = Layer(3); NOutput = Layer(4);

% Total number of neurons;

NTotal = NInput + Nhl + Nh2 + NOutput;

% Inputs/neuron outputs are assigned to the layer in the

% following order:

% Neuron/Input #

%
% Input Connections

j
1 NInput

% Hidden Layer #1 Neurons
]
(NInput+1) (NInput + Nhl)

% Hidden Layer 02 Neurons
]
(NInput + Nhl +1).. (NInput + Nhl +Nh2)

% Output Layer Neurons j (NInput + Nhl +Nh2 + 1).. (NTotal)

%
% Zero all inputs/neuron outputs

Neurons = zeros(NTotal, 1);

100

% Initialise the weights to random numbers within Range

Range = 0.1; rand('uniform');

Wl = 2*Range*rand(Nhl, NInput + 1) - Range;

W2 = 2*Range*rand(Nh2, Nhl + 1) - Range;

W3 = 2*Range*rand(NOutput, Nh2 + 1) - Range;

[M,N] = size(Wl);

if M == 1,

W1(M,N) = 0;

else

Tmp = (0:M-1) + 0.5 - M/2; W1(:,N) = (2*R/M)*Tmp(:);

end;

[M,N] = size(W2);

if M == 1,

W2(M,N) = R;

else

Tmp = (0:M-1) + 0.5 - M/2; W2(:,N) = (2*R/M)*Tmp(:);

end;

[M,N] = size(W3);

if M == 1,

W3(M,N) = R;

else

Tmp = (0:M-1) + 0.5 - M/2; W3(:,N) = (2*R/M)*Tmp(:);

end;

dWl = zeros(Nhl, NInput+1); dW2 = zeros(Nh2, Nhl + 1); dW3 = zeros(NOutput, Nh2 + 1);

%
disp(sprintf('*** 3-Layer Back-Propagating Neural Network Created ***\n'))

disp(sprintf('NInput - Number of Input: %g\ NInput))

disp(sprintf('Nhl - Number of Neurons in Hidden Layer #1: %g', Nhl))

disp(sprintf('Nh2 - Number of Neurons in Hidden Layer #2: %g\ Nh2))

disp(sprintf('NOutput - Number of Output Neurons: %g\ NOutput))

disp(sprintf('Wgts - Connection Weights for Inputs to all Neurons are: '

))

Wl = Wl
W2 = W2
W3 = W3
return;

function [Wl,W2,dWl,dW2] = learn2f(P,DoVec,L,Nrons,Wl,W2,dWl,dW2,Npar)

% function [Wl,W2,dWl,dW2] = learn2f(P,DoVec,L,Nrons,Wl >
W2,dWl,dW2,Npar)

% This function facihtates back-propagation learning for the 2-layer neural network. The nonlinear

% mapping in each neuron is tanh(-). The bias weightings are fixed and evenly spaced between -R:R

% set using net2f.

%
% Requires:

% P(arameters): P(l,2) = Learning Rate, P(3,4) = Momemtum Rate

% DoVec: The desired output column vector [dl ; d2;; dNOutput]

% N(eurons): Neuron outputs given the current input vector

% L(ayer): L(l) = NInput, L(2) = Nhl, L(3) = NOutput

% Wl, W2: Connection weights

% dWl, dW2: Previous changes in connection weights

% Npar: Npar(l) = Bias on/off, Npar(2) = Gain = 1 (Not Used)

% Returns:

% Wl, W2: Updated connection weights

% dWl, dW2: Work arrays for latest weight changes

101

% Teo Chin Hock.

% Date: 9 Oct 91.

% Version: 1.02

%
NTotal - length(Nrons); NL1 = L(l) + 1; NL2 = NL1 + L(2);

% Calculate the output error vector

ErrVec2 = DoVec - Nrons(NL2:NTotal);

% delta for the output layer.

delta2 = ErrVec2 .* (1 - Nrons(NL2:NTotal) .* Nrons(NL2:NTotal));

dW2 = P(2) .* (delta2 * [Nrons(NLl:(NL2-l)); Npar(l)]') + (P(4) .* dW2);

%
% delta for the hidden layer.

ErrVecl = W2(:,1:L(2))' * delta2;

deltal = ErrVecl .* (1 - Nrons(NLl:(NL2-l)) * Nrons(NLl:(NL2-l)));

dWl = P(l) .* (deltal * [Nrons(l:(NLl-l)); Npar(l)]') + (P(3) .* dWl);

%
% Updating the weights except the bias weighting

W1(:,1:L(1)) = W1(:,1:L(1)) + dWl(:,l:L(l)); W2(:,1:L(2)) = W2(:,1:L(2)) + dW2(:,l:L(2));

%
return;

function tWl,W2,W3,dWl,dW2,dW3]=learn3f(P,DoVec
>
L,Nrons,Wl

)
W2

>
W3,dWl

)
dW2,dW3

>Npar)

%function [Wl,W2,W3
>
dWl,dW2

>
dW3]=learn3f(P,DoVec

>L,Nrons)
Wl,W2,W3,dWl,dW2

)
dW3

)
Npar)

% This function facilitates back-propagation learning for the 3-layer neural network. The nonlinear

% mapping in each neuron is tanh(-). The bias weightings are fixed and evenly spaced between

% -R:R set using net3f.

%
% Requires:

% P(arameters): Layertfl: P(l) = Learning Rate, P(4) = Momemtum Rate

% Layer#2: P(2) = Learning Rate, P(5) = Momemtum Rate

% Layer#3: P(3) = Learning Rate, P(6) = Momemtum Rate

% DoVec: The desired output column vector [dl ; d2;; dNOutput]

% N(eurons): Neuron outputs given the current input vector

% L(ayer): L(l) = NInput, L(2) = Nhl, L(3) = Nh2, L(4) = NOutput

% Wl, W2, W3: Connection weights

% dWl, dW2, dW3: Previous changes in connection weights

% Npar(ameters): Npar(l) = Bias, Npar(2) = Gain = 1 (Not used)

%
% Returns:

% Wl, W2, W3: Updated connection weights

% dWl, dW2, dW3: Work arrays for latest weight changes

%
% Teo Chin Hock. NPS.

% Date: 9 Oct 91.

% Version: 1.0

NTotal = length(Nrons); NL1 = L(l) + 1; NL2 = NL1 + L(2); NL3 = NL2 + L(3);

% Calculate the output error vector

ErrVec3 = DoVec - Nrons(NL3: NTotal);

% delta for the output layer.

delta3 = ErrVec3 .* (1 - Nrons(NL3:NTotal) .* Nrons(NL3:NTotal));

dW3 = P(3) .* (delta3 * [Nrons(NL2:(NL3-l)); 1]') + (P(6) .* dW3);

%
% delta for the hidden layer #2.

ErrVec2 = W3(:,1:L(3))' * delta3;

102

delta2 = ErrVec2 * (1 - Nrons(NL2:(NL3-l)) * Nrons(NL2:(NL3-l)));

dW2 = P(2) .* (della2 * [Nrons(NLl:(NL2-l)); 1]') + (P(5) .* dW2);

%
% delta for the hidden layer H\.

ErrVecl = W2(:,1:L(2))' * delta2;

deltal = ErrVecl .* (1 - Nrons(NLl:(NL2-l)) .* Nrons(NLl:(NL2-l)));

dWl = P(l) .* (deltal * tNrons(l:(NLl-l)); 1]') + (P(4) .* dWl);

%
% Updating the weights

W1(:,1:L(1)) = W1(:,1:L(1)) + dWl(:,l:L(l));

W2(:,1:L(2)) = W2(:,1:L(2)) + dW2(:,l:L(2));

W3(:,1:L(3)) = W3(:,1:L(3)) + dW3(:,l:L(3));

%
return;

function [Neurons] = recall2f(Layer,Neurons,Wl,W2,Npar);

% function [Neurons] = recall2f(Layer,Neurons,Wl,W2,Npar);

% Function to facilitate recall of the back-propagation neural network once. The nonlinear mapping

% in each neuron is tanh(-). The bias weightings are set and evenly spaced

% between -R:R using net3f.

%
% Type help learn2f for explanation of all parameters.

% Teo Chin Hock. NPS.

% Date: 9 Oct 91.

% Version: 1.02

NL1 = Layer(l) + 1; NL2 = NL1 + Layer(2); NTotal = sum(Layer);

% Calculate the outputs for first layer of the neurons

Summ = Wl * [Neurons(l:(NLl-l)); Npar(l)];

Neurons(NLl:(NL2-l)) = mtanh(Summ);

% Calculate the outputs for second layer of the neurons

Summ = W2 * [Neurons(NLl:(NL2-l)); Npar(l)];

Neurons(NL2:NTotalj = mtanh(Summ);

return;

function [Neurons] = recall3f(Layer)Neurons,Wl,W2,W3,Npar);

% function [Neurons] = recaLL3f(Layer,Neurons,Wl
)
W2,W3,Npar);

% Function to facilitate recall of the back-propagation neural network once. The nonlinear mapping

% in each neuron is tanh(-). The bias weightings are set and evenly spaced

% between -R:R using net3f.

%
% Type help learn3f for explanation of all parameters.

% Teo Chin Hock. NPS.

% Date: 9 Oct 91.

% Version: 1.0

NL1 = Layer(l) + 1; NL2 = NL1 + Layer(2); NL3 = NL2 + Layer(3); NTotal = sum(Layer);

% Calculate the outputs for first layer of the neurons

Summ = Wl * [Neurons(l:(NLl-l)); Npar(l)];

Neurons(NLl:(NL2-l)) = mtanh(Summ);

% Calculate the outputs for second layer of the neurons

Summ = W2 * [Neurons(NLl:(NL2-l)); Npar(l)];

Neurons(NL2:(NL3-l)) = mtanh(Summ);

% Calculate the outputs for output layer of the neurons

103

Summ = W3 * [Neurons(NL2:(NL3-l)); Npar(l)];

Neurons(NL3:NTotal) = mtanh(Summ);

return;

function [RIndx] = shuffle(Nelem);

% function [RIndx] = shuffle(Nelem)

% Returns a randomly shuffled index vector, RIndx, with Nelem elements. Rlndx contains indices

% (from 1 to Nelem) randomly ordered.

% Teo Chin Hock. NPS.

% Date: 18 April 91.

rand('uniform'); Wlndx= zeros(2,Nelem);

for i= l:Nelem,

n = fix(Nelem*rand(l)) + 1;

while WIndx(2,n) > 0,

n = n + 1;

if n > Nelem,

n = 1;

end;

end;

WIndx(l,n) = i; WIndx(2,n) = 1;

end;

RIndx = WIndx(l,:);

return;

function [t] = mtanh(d);

% A correct version of tanh().

% Written by Teo Chin Hock.

% NPS 29 July 1991.

%
dSign = sign(d);

t = (1 - exp(-2 .* abs(d))) ./ (1 + exp(-2 .* abs(d)));

t = dSign .* t;

return;

104

LIST OF REFERENCES

1 Astrom, K.J. and Wittenmark, B., Adaptive Control, Addison-Wesley Publishing

Company, 1989.

2 Narendra, K.S. and Parthasarathy, K., "Identification and Control of Dynamical

Systems Using Neural Networks," IEEE Transactions on Neural Networks, Vol.

1, No. 1, Mar. 1990.

3 Thomas Kailath, Linear Systems, Prentice-Hall International, Inc., 1980.

4 Goodwin, G.C. and Sin, K.S., Adaptive Filtering, Prediction and Control, Prentice

Hall, Inc., 1984.

5 Lennart Ljung, "System Identification: Theory for the User", Prentice Hall, Inc.,

1987.

6 K. Hornik, M. Stinchcombe, and H. White, "Multi-layer feed-forward networks

are universal approximators," Dept. of Economics, UCSD, discussion paper, June,

1988.

7. NeuralWare, Inc., Neural Computing, documentation for the Neural Professional

II Plus Neural Network Simulation Software, 1991.

8. Tolat, V.V., and Widrow, B., "An adaptive broom balancer with visual inputs,"

Proceedings of the International Conference on Neural Networks, II, 641-647,

IEEE Press, New York, July 1988.

9. Nyugen, D. and Widrow, B., "The Truck Backer-Upper: An Example of Self-

Learning in Neural Networks," IJCNN-89, Conference Record, July 1989.

10. Rumelhart, D.E., Hinton, G.E., and Williams, R.J., "Learning internal

representations by error propagation," in Parallel Distributed Processing:

Explorations in the Microstructure of Cognition, Vol. I, pp 318-362, MIT Press,

Cambridge, MA, 1986.

11. Haykin, S., "Adaptive Filter Theory, " Prentice-Hall Inc., New Jersey, 1986.

105

INITIAL DISTRIBUTION LIST

No. of Copies

1. Defense Technical Information Center 2

Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 52 2

Naval Postgraduate School
Monterey, California 93943-5000

3. Chairman, Code EC 1

Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California 93943-5000

4. Dr. A. J. Healey, Code ME 1

Department of Mechanical Engineering
Naval Postgraduate School
Monterey, California 93943-5000

5. Dr. Roberto Cristi, Code EC/Cx 1

Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California 93943-5000

6. Dr. Ralph Hippenstiel, Code EC/Hi 1

Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California 93943-5000

7. Chief Defence Scientist 1

MINDEF Singapore
MINDEF Building, Gombak Drive, S2366
Republic of Singapore

8. Head, Air Logistics 1

HQ-RSAF, MINDEF
MINDEF Building, Gombak Drive, S2366
Republic of Singapore

9. Director 1

Defence Science Organisation
20 Science Park Drive, S0511
Republic of Singapore

106

10. Director
Defence Materials Organisation
LEO Building, Paya Lebar Airport, S1953
Republic of Singapore

11. Mr. Paul Heckman, Code 943
Naval Ocean Systems Center
San Diego, California 92152

12. Mr. Robert Wilson
Head, Systems Engineering Branch
David Taylor Research Center
Carderock, Bethesda, Maryland 20084-5000

13. Mr. Dan Steiger
Marine Systems Group
Naval Research Laboratory
Washington, D.C. 20032

107

Thesis
T2755 Teo

c'. 1 Back-propagation neural
networks in adaptive con-
trol of unknown nonlinear
systems.

Thesis
T2755 Teo

c.l "ac 1
:- -propagation neural

networks in adaptive con-

trol of unknown nonlinear
systems.

